K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

a) \(E=4x^2+y^2-4x-2y+3=\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\) với mọi \(x;y\)

\(\Rightarrow\) GTNN của E là 1 khi \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=1\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)vậy GTNN của E là 1 khi \(x=\dfrac{1}{2};y=1\)

b) \(G=x^2+2y^2+2xy-2y=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\) với mọi \(x;y\)

\(\Rightarrow\) GTNN của G là \(-1\) khi \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1\end{matrix}\right.\) vậy GTNN của G là \(-1\) khi \(y=1;x=-1\)

c) \(H=x^2+14x+y^2-2y+7=\left(x^2+14x+49\right)+\left(y^2-2y+1\right)-43\)

\(=\left(x+7\right)^2+\left(y-1\right)^2-43\ge-43\) với mọi \(x;y\)

\(\Rightarrow\) GTNN của H là \(-43\) khi \(\left\{{}\begin{matrix}\left(x+7\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+7=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=1\end{matrix}\right.\) vậy GTNN của H là \(-43\) khi \(x=-7;y=1\)

d) câu này hình như đề sai

26 tháng 9 2017

a) \(x^3-\dfrac{1}{9}x=0\)

\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x\left(x-3\right)+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)

\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)

d) \(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)

\(\Rightarrow x-3=0\Rightarrow x=3.\)

4 tháng 10 2017

\(\dfrac{2}{5}\)

10 tháng 8 2017

(x+1)(x+3) +11

=x^2 +4x+3+11

=x^2 +4x+14

=x^2 +4x+4+10

=(x+2)^2 +10

có : (x+2)^2 \(\ge\)0 \(\forall\)x\(\in\)R

10 > 0 \(\forall\)R

=> (x+2)^2 +10 \(\ge\)10

dấu "=" xảy ra khi và chỉ khi :

(x+2)^2=0 \(\Leftrightarrow\)x+2=0 \(\Leftrightarrow\)x=-2

Vậy (x+1)(x+3)+10 đạt giá trị nhỏ nhất là 10 \(\Leftrightarrow\)x=-2

10 tháng 8 2017

b, 5-4x^2 +4x

=-(4x^2 -4x-5)

=-(2x-1)^2 +4

có (2x-1)^2 \(\ge\)0\(\forall\) x\(\in\)R=> -(2x-1)^2 \(\le\)0 \(\forall\)x \(\in\)R

4>0 \(\forall\)R

=> -(2x-1)^2+4 \(\le\)4

dấu "=" xảy ra \(\Leftrightarrow\)-(2x-1)^2=0

\(\Leftrightarrow\)2x= 1 <=> x=0,5

vậy 5-4x^2+4x đạt giá trị lớn nhất là 4 <=> x=0,5

nếu đúng thì like nha

a: \(=x^2+4x+3+11\)

\(=x^2+4x+14\)

\(=x^2+4x+4+10=\left(x+2\right)^2+10>=10\)

Dấu '=' xảy ra khi x=-2

b: \(-4x^2+4x+5\)

\(=-\left(4x^2-4x-5\right)\)

\(=-\left(4x^2-4x+1-6\right)\)

\(=-\left(2x-1\right)^2+6< =6\)

Dấu '=' xảy ra khi x=1/2

c: \(-x^2+6x-4\)

\(=-\left(x^2-6x+4\right)\)

\(=-\left(x^2-6x+9-5\right)\)

\(=-\left(x-3\right)^2+5< =5\)

Dấu '=' xảy ra khi x=3

24 tháng 7 2017

\(x^2+4xy+2y^2-22y+173\)

\(=\left(x^2+4xy+4y^2\right)-2\left(y^2+11y+\dfrac{121}{4}\right)+\dfrac{467}{2}\)\(=\left(x+2y\right)^2-2\left(y+\dfrac{11}{2}\right)^2+\dfrac{467}{2}\ge\dfrac{467}{2}\forall x;y\)Vậy GTNN của biểu thức là; \(\dfrac{467}{2}\) khi \(\left\{{}\begin{matrix}x+2y=0\\y+\dfrac{11}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-11=0\\y=-\dfrac{11}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=-\dfrac{11}{2}\end{matrix}\right.\)Học tốt nha<3

7 tháng 8 2017

Câu h đề không đẹp lắm, sửa thành-2x nha

f) x2-2x+5

=x2-2x+1+4

=(x-1)2+4

Vì: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Min = 4 khi x=1

g) 2x2-6x

= \(\sqrt{2x}^2-2.\sqrt{2x}.\dfrac{3\sqrt{2}}{2}+\left(\dfrac{3\sqrt{2}}{2}\right)^2-\left(\dfrac{3\sqrt{2}}{2}\right)^2\)

= \(\left(\sqrt{2x}-\dfrac{3\sqrt{2}}{2}\right)^2-\dfrac{9}{2}\)

Tương tự bài trên

h) x2+y2-2x+6y+10

=(x2-2x+1)+(y2+6y+9)

=(x-1)2+(y+3)2

Min=0 khi x=1; y=-3

7 tháng 8 2017

nói thật bn xạo lz vc đề thế nào thì để đó chứ ko đẹp thì nó ko có Min à

a: \(x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

=>x=1 hoặc x=3

b: \(x^2+x-12=0\)

=>(x+4)(x-3)=0

=>x=3 hoặc x=-4

c: \(3x^2+2x-5=0\)

\(\Leftrightarrow3x^2+5x-3x-5=0\)

=>(3x+5)(x-1)=0

=>x=1 hoặc x=-5/3

d: \(x^4-2x^2-3=0\)

\(\Leftrightarrow x^4-3x^2+x^2-3=0\)

\(\Leftrightarrow x^2-3=0\)

hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

29 tháng 10 2017

a.) \\(\\left(a+b+c\\right)^3-a^3-b^3-c^3\\)

\\(=a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc-a^3-b^3-c^3\\)\\(=3\\left(3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc\\right)\\)

\\(=3\\left(abc+a^2b+a^2c+ac^2+b^2c+ab^2+abc+bc^2\\right)\\)

\\(=3\\left[ab\\left(a+c\\right)+ac\\left(a+c\\right)+b^2\\left(a+c\\right)+bc\\left(a+c\\right)\\right]\\)

\\(=3\\left(a+c\\right)\\left(ab+ac+bc+b^2\\right)\\)

\\(=3\\left(a+c\\right)\\left[a\\left(b+c\\right)+b\\left(b+c\\right)\\right]\\)

\\(=3\\left(a+c\\right)\\left(a+b\\right)\\left(b+c\\right)\\)

b) 4a2b2-(a2  +b2-c2)2

=(2ab+a2+b2-c2)(2ab-a2-b2+c2

=[(a+b)2-c2][c2-(a-b)2]

=(a+b+c)(a+b-c)(c+a-b)(c-a+b)

 

30 tháng 10 2017

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc-a^3-b^3-c^3\)

\(=3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc\)

\(=3\left(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\right)\)

\(=3\left(ab\left(a+b\right)+b^2c+abc+bc^2+c^2a+ca^2+abc\right)\)

\(=3\left(ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)\right)\)

\(=3\left(a+b\right)\left(ab+bc+c^2+ac\right)\)

\(=3\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

Bài 2: 

a: \(x^2-16-\left(x+4\right)=0\)

=>(x+4)(x-4)-(x+4)=0

=>(x+4)(x-5)=0

=>x=5 hoặc x=-4

b: \(\left(3x-1\right)^2-\left(9x^2-1\right)=0\)

\(\Leftrightarrow9x^2-6x+1-9x^2+1=0\)

=>-6x+2=0

=>-6x=-2

hay x=1/3

c: \(4x^2+9=-12x^2\)

\(\Leftrightarrow4x^2+12x^2=-9\)

\(\Leftrightarrow16x^2=-9\)(vô lý)

Do đó: \(x\in\varnothing\)

d: \(4x^2-5x+1=0\)

\(\Leftrightarrow4x^2-4x-x+1=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)

=>x=1 hoặc x=1/4

e: \(4x^2-4x+3=0\)

\(\Leftrightarrow4x^2-4x+1+2=0\)

\(\Leftrightarrow\left(2x-1\right)^2=-2\)(vô lý)

Do đó: \(x\in\varnothing\)