K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VA
0
TM
1
3 tháng 7 2019
2A = 2x^2 - 2xy + 2y^2 - 4x - 4y
2A = ( x^2 - 2xy + y^2 ) + ( x^2 - 4x + 2^2 ) + ( y^2 - 4y + 2^2 ) - 8
2A = ( x - y )^2 + ( x - 2 )^2 + ( y - 2 )^2 - 8
Ta có : ( x - y )^2 >= 0 ; ( x - 2 )^2 >= 0 ; ( y - 2 )^2 >= 0 với mọi x , y
=> Min 2A = 0 + 0 + 0 - 8 = -8
=> Min A = -8 : 2 = -4
0D
0
20 tháng 2 2018
Ta có: \(\left(x+y\right)^2\ge4xy=4\)
Mà (x+y)2 nhỏ nhất
\(\Rightarrow\left(x+y\right)^2=4\)
\(\Rightarrow\orbr{\begin{cases}x+y=2\\x+y=-2\end{cases}}\)
Lại có: \(M=3x^2-2x+3y^2-2y+6xy+1\)
\(=3\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\)
\(=3\left(x+y\right)^2-2\left(x+y\right)+1\)
Thay vào mà tính
\(P=x^2+2.x.\frac{y-2}{2}+\frac{\left(y-2\right)^2}{4}+y^2-3y+2015-\frac{\left(y-2\right)^2}{4}\)
\(=\left(x+\frac{y-2}{2}\right)^2+\frac{3y^2-8y+8056}{4}\)
\(=\left(x+\frac{y-2}{2}\right)^2+\frac{3\left(y-\frac{4}{3}\right)^2}{4}+\frac{6038}{3}\ge\frac{6038}{3}\)
"=" <=> \(y=\frac{4}{3};x=-\left(\frac{y-2}{2}\right)=\frac{1}{3}\)
BO thấy em làm gọn gẽ ko:v