Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi 0 < x < 1 ta có:
\(A=\frac{2}{1-x}+\frac{1}{x}=\frac{\left(\sqrt{2}\right)^2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)
Dấu "=" xảy ra <=> \(\frac{\sqrt{2}}{1-x}=\frac{1}{x}=\sqrt{2}+1\Rightarrow x=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Kết luận:...
\(Q=\frac{x^2-x+1}{x^2+x+1}=\frac{\frac{2}{3}x^2-\frac{4}{3}x+\frac{2}{3}}{x^2+x+1}+\frac{1}{3}=\frac{2}{3}\frac{\left(x-1\right)^2}{x^2+x+1}+\frac{1}{3}\ge\frac{1}{3}\)
\(\Rightarrow MIN\left(Q\right)=\frac{1}{3}\)Dấu "=" xảy ra khi x=1
\(Q=\frac{x^2-x+1}{x^2+x+1}=\frac{-2x^2-4x-2}{x^2+x+1}+3=-2\frac{\left(x+1\right)^2}{x^2+x+1}+3\ge3\)
\(\Rightarrow MAX\left(Q\right)=3\)Dấu "=" xảy ra khi x=-1
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Có: \(x^2+x+1>0,\forall x.\)
TXĐ: R.
\(A=\frac{x+1}{x^2+x+1}\)
<=> \(Ax^2+Ax+A=x+1\)
<=> \(Ax^2+\left(A-1\right)x+A-1=0\)(1)
+) A = 0 => x = -1
+) A khác 0. Xem (1) là phương trình ẩn x và tham số A.
\(\Delta=\left(A-1\right)^2-4A\left(A-1\right)=-3A^2+2A+1\)
(1) có nghiệm <=> \(\Delta\ge0\Leftrightarrow-3A^2+2A+1\ge0\)
<=> \(-\frac{1}{3}\le A\le1\)
=> min A = -1/ 3 đạt tại x = -2 ( thay A =-1/3 vào phương trình (1) để tìm x )