Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
k) Vì \(\left|4x-3\right|\ge0\left(\forall x\right);\left|5y+7,5\right|\ge0\left(\forall y\right)\)
\(\Rightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}}\)
Vậy CMin = 17,5 khi và chỉ khi x = 3/4 và y = -3/2
n) Ta có:
\(M=\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|=1\)
Dấu "=" xảy ra khi \(\left(x-2002\right)\left(2001-x\right)\ge0\)
<=> x lớn hơn hoặc bằng 2002
Hoặc x bé hơn hoặc bằng 2001
Vậy MMin =1
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
nhận xét
/3x -6/ >=0
/4x-10/>=0
=> /3x-6/+/4x-10/>=0
dấu = xảy ra khi và chỉ khi
\(\hept{\begin{cases}3x-6=0\\4x-10=0\end{cases}}\)=> \(\hept{\begin{cases}3x=6\\4x=10\end{cases}}\)
=> không có giá trị của x đẻ A đạt giá trị nhỏ nhất
bằng 2