Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),
a) Ta có : \(x-y=3\Rightarrow x=3+y\).
Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)
\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
\(\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
b) Ta có : \(x-y=2\Rightarrow x=2+y\)
Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)
\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)
\(\ge\left|-2y-5+2y+1\right|=4\)
Các câu khác tương tự nhé em !
a) Ta có: \(\text{|}5x-2\text{|}\ge0\)
=> \(2\text{|}5x-2\text{|}\ge2.0=0\)
=> \(2\text{|}5x-2\text{|}+4\ge0+4=4\)
Vậy Min(2|5x-2|+4)=4 khi x=\(\frac{2}{5}\)
b) Ta có: \(x^2\ge0\) và \(|y-3|\ge0\)=> \(3|y-3|+5\ge3.0+5=5\)
=> \(x^2+3|y-3|+5\ge0+5=5\)
Vậy Min(x2+3|y-3|+5)=5 khi x =0 và y=3
c) Ta có: |x-1|=|1-x| (Vì hai số x-1 và 1-x là hai số đối nhau, mà giá trị tuyệt đối của hai số đối nhau luôn bằng nhau)
=> |x-1|+|x-2016|=|1-x|+|x-2016|
Ta có: \(\text{|}1-x\text{|}+\text{|}x-2016\text{|}\ge\text{|}1-x+x-2016\text{|}=\text{|}-2015\text{|}=2015\)
Vậy Min(|x-1|+|x-2016|)=2015
Mấy cái này không tìm được giá trị lớn nhất nha bạn
Nó thu gon mất cái đề nên mình không thấy được mấy cái đề sau. 3 câu d, e, f bạn lập bản biến thiên ra mà làm
1) \(B=\left|x+y\right|+\left|x-3\right|+2\)
Ta có: \(\orbr{\begin{cases}\left|x+y\right|\ge0\forall x;y\\\left|x-3\right|\ge0\forall x\end{cases}}\Rightarrow\left|x+y\right|+\left|x-3\right|+2\ge2\forall x;y\)
\(B=2\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+y=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\y=-x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
KL:............................
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
\(\left(x-3\right)^2\ge0\) với mọi x
\(\left(y-1\right)^2\ge0\) với mọi y
=>\(\left(x-3\right)^2+\left(y-1\right)^2\ge0\) với mọi x;y
=>\(\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\) với mọi x;y
Dấu "=" xảy ra
<=>\(\left(x-3\right)^2=\left(y-1\right)^2=0\Leftrightarrow\int^{x-3=0}_{y-1=0}\Leftrightarrow\int^{x=3}_{y=1}\)
Vậy GTNN của \(\left(x-3\right)^2+\left(y-1\right)^2=5\) tại x=3;y=1