Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2\ge0;\left|2y+2\right|\ge0\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\)
dấu = xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
vậy GTNN của C là -3 khi x=1, y=-1
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
1) Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2) Ta có: Q = 9 - |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)
Đẳng thức xảy ra khi: |x| = 0 => x = 0
Vậy giá trị nhỏ nhất của p là 7 khi x = 0
b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)
Đẳng thức xảy ra khi: -|x| = 0 => x = 0
Vậy giá trị lớn nhất của Q là 9 khi x = 0
P = 3 - ( x - 1 )2
Ta có : ( x - 1 )2 \(\le\)0 với mọi \(x\inℤ\)
\(\Rightarrow\)3 - ( x - 1 )2 \(\le\)3
Dấu "=" xảy ra khi x - 1 = 0 khi x = 1
Vậy GTLN của P = 3 tại x = 1
ta có (x-1)2 >=0 với mọi x
=> 3-(x-1)2 =<3 hay P =<3
Dấu "=" xảy ra <=> (x-1)2=0
<=> x-1=0
<=> x=1
Vậy MaxP=3 đạt được khi x=1
|x+2|\(\ge\)0 =>|x+2|+2\(\ge\)2
Dấu bằng xảy ra khi x+2=0 hay x =-2
GTNN của |x+2|+2=2 khi x=-2
a) Vì \(\left|2x+8\right|\ge0\forall x\)
\(\Rightarrow\left|2x+8\right|-3\ge-3\forall x\)
\(\Rightarrow A_{min}=-3\)
Dấu "=" xảy ra khi: \(2x+8=0\)
\(\Leftrightarrow2x=-8\)
\(\Leftrightarrow x=-4\left(TM\right)\)
Vậy \(A_{min}=-3\)\(\Leftrightarrow\)\(x=-4\)
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|=\left|5-1\right|=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)\left(y-2\right)=\left|\left(x+1\right)\left(y-2\right)\right|\)
<=> (x+1)(y-2) lớn hơn hoặc bằng 0
<=> x+1 lớn hơn hoặc bằng 0 và y-2 lớn hơn hoặc bằng 0
x+1 bé hơn hoặc bằng 0 và y-2 bé hơn hoặc bằng 0
<=> x lớn hơn hoặc bằng -1 và y lớn hơn hoặc bằng 2
x bé hơn hoặc bằng -1 và y bé hơn hoặc bằng 2
<=> x lớn hơn hoặc bằng 2
x bé hơn hoặc bằng -1
Vậy Amin = 4 khi và chỉ khi x lớn hơn hoặc bằng 2 hoặc x bé hơn hoặc bằng -1
giá trị nhỏ nhất của biểu thức là 2010
Vì ( x - 1 )2 ≥ 0 ∀ x ∈ N
Để A = ( x - 1 )2 + 2010 đạt GTNN <=> x - 1 = 0 => x = 1
Vậy GTNN của biểu thức A = ( x - 1 )2 + 2010 là 2010 tại x = 1