Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Có: \(|x-1|\ge0\)
\(|x-2|\ge0\)
.................
\(|x-2019|\ge0\)
=> \(A\ge0\)
Vậy giá trị nhỏ nhất của A là 0
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
a) Vì (x+2)2 >/ 0
=> \(A\le\frac{3}{0+4}=\frac{3}{4}\Rightarrow Amax=\frac{3}{4}\Leftrightarrow x+2=0\Rightarrow x=-2\)
b) Vì \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(B\ge0+0+1=1\Rightarrow Bmin=1\Leftrightarrow\int^{x+1=0}_{y+3=0}\Rightarrow\int^{x=-1}_{y=-3}\)
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
\(A=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)
Vậy GTNN của A là 3 khi \(\begin{cases}x-2\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge2\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le5\)
Áp dụng tính chất: |a|+|b| >=|a+b| ta có:
|x-2|+|5-x|>=|x-2+5-x|=|3|=3
=>A>=3
Dấu bằng xảy ra khi: -5<=x<=2
Vậy giá trị nhỏ nhất của A là:3
>= là lớn hơn hoặc bằng: <= là bé hơn hoặc bằng
Chúc bạn học tốt
\(B=\left(x+1\right)^2+\left(y+3\right)^2+1\ge1\forall x,y\)
Vậy : Min B = 1 tại \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)
=.= hk tốt!!
\(\left(x+1\right)^2\ge0\)
\(\left(y+3\right)^2\ge0\)
\(vt\ge1\)
dấu = xảy ra khi và chỉ khi x=-1 , y =-3
mk cần gấp
\(P=\left(x^2-3\right)\left(x^2+2\right)\ge-6\forall x\)
Dấu '=' xảy ra khi x=0