K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\left(x-3\right)^2+\left(x-11\right)^2\ge0\)

\(MinB=0\Leftrightarrow\hept{\begin{cases}x-3=0\\x-11=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\x=11\end{cases}}\)

6 tháng 8 2016

C = (x + 1).(x - 2).(x - 3).(x - 6)

= [(x + 1)(x - 6)][(x - 2)(x - 3)]

= (x2 - 5x - 6)(x2 - 5x + 6)

Đặt x2 - 5x = t, ta có: 

C = (t - 6)(t + 6) = t2 - 36

Vì t2 lớn hơn hoặc bằng 0 => t2 - 36 lớn hơn hoặc bằng -36

Dấu "=" xảy ra khi t2 = 0 => t = 0 => x2 - 5x = 0 => x(x - 5) = 0 => x = 0 hoặc x = 5

Vậy Min C = -36 tại x = 0 hoặc 5

11 tháng 10 2020

1/

( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2

= 2a3 

2/

A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinA = 1 <=> x = 1 ; y = 2

B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = -2

=> MinB = 2 <=> x = -2

C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y

Dấu "=" xảy ra khi x = 1/5 ; y = 0

=> MinC = 10 <=> x = 1/5 ; y = 0

D = ( x - 3 )2 + ( x - 11 )2

Đặt t = x - 7

D = ( t + 4 )2 + ( t - 4 )2

    = t2 + 8t + 16 + t2 - 8t + 16

    = t2 + 32 ≥ 32 ∀ t

Dấu "=" xảy ra khi t = 0

=> x - 7 = 0 => x = 7

=> MinD = 32 <=> x = 7

11 tháng 10 2020

Cảm ơn bn nhiều nhé!

12 tháng 8 2018

a) \(A=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1\)

Vậy GTNN của A là 1 khi x = 1

b) \(B=x^2-4x+y^2-8y+6\)

    \(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)

    \(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = 2; y = 4

12 tháng 8 2018

a, A = x2 - 2x + 2

       =(x2 -2x + 1) +1

       =(x-1)+ 1 >= 1

Dấu bằng xảy ra <=> (x-1)2 = 0

                         <=> x - 1  = 0

                         <=> x       = 1

Vậy...

b, B = x2 - 4x + y2- 8y + 6

    B =(x2 - 4x + 4) + (y2- 8y + 16) - 14

    B =(x - 2)2 + (y - 4)2 -14 >= -14

Dấu bằng xảy ra + <=> x - 2 = 0

                            <=> x     = 2

                         +  <=> y - 4 = 0      

                             <=> y      = 4

Vậy ...

Bài này dài vc sao làm hết dc.

12 tháng 7 2018

\(A=x^2+3x+7\)

\(A=x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+7\)

\(A=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}+7\)

\(A=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)

Nhận xét: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=\frac{-3}{2}\)

Vậy \(minA=\frac{19}{4}\Leftrightarrow x=\frac{-3}{2}\)

Các câu khác lm tương tự nhé, lần sau đừng đưa nhiều câu cùng một lúc lên thế này, đưa từng câu một thôi thì bn sẽ có câu tl nhanh hơn đấy

12 tháng 7 2018

Uk.Mk nhớ rồi!

22 tháng 8 2015

C=[(x+1)(x-6)][(x-2)(x-3)]

=(x2-5x-6)(x2-5x+6)

=(x2-5x)2-36>=-36

GTNN cua C=-36 tai x2-5x=0=>x(x-5)=0=>x=0 hoac x=5

18 tháng 6 2016

B=(x-3)2+(x-11)2

  =x2-6x+9+x2-22x+121

  =2x2-28x+130

  =2(x2-14x+65)

  =2(x2-2.7x+72-72+65)

  =2[(x-7)2-49+65]

  =2(x-7)2+32

=> vì 2(x-7)2 >= 0 

=>2(x-7)2+32 >= 32

=> GTNN của B=32. Khi x=7

27 tháng 11 2017

Ta có 

A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2

=>MIN A=2 khi và chỉ khi x-3=0 hay x=3

B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1

=>MIN B=1 khi và chỉ khi x-10=0 hay x=10

27 tháng 11 2017

làm nốt hộ mình con C đi

24 tháng 7 2018

a) Sửa đề \(A=25x^2+3y^2-10x+11\)

\(A=25x^2-10x+1+3y^2+10\)

\(A=\left(5x-1\right)^2+3y^2+10\)

\(\left(5x-1\right)^2\ge0\) với mọi x

\(3y^2\ge0\) với mọi y

\(\Rightarrow\left(5x-1\right)^2+3y^2\ge0\) với mọi x,y

\(\Rightarrow\left(5x-1\right)^2+3y^2+10\ge10\)

Amin = 10

\(\Leftrightarrow5x-1=0\)\(3y^2=0\)

\(\Rightarrow5x=1\)\(y^2=0\)

\(\Rightarrow x=\dfrac{1}{5}\)\(y=0\)

Vậy Amin = 10 <=> x = 1/5 và y = 0

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(\Rightarrow B=4x^2-4x+1+x^2+4x+4\)

\(\Rightarrow B=5x^2+5\)

\(5x^2\ge0\) với mọi x

\(\Rightarrow5x^2+5\ge5\)

=> Bmin = 5

<=> 5x2 = 0

=> x2 = 0

=> x = 0

Vậy Bmin = 5 <=> x = 0

c) \(C=\left(x-3\right)^2+\left(x-11\right)^2\)

\(C=x^2-6x+9+x^2-22x+121\)

\(C=2x^2-28x+130\)

\(C=2\left(x^2-14x+65\right)\)

\(C=2\left(x^2-2.x.7+7^2+16\right)\)

\(C=2\left(x-7\right)^2+16.2\)

\(C=2\left(x-7\right)^2+32\)

\(2\left(x-7\right)^2\ge0\) với mọi x

=> \(2\left(x-7\right)^2+32\ge32\)

=> Cmin = 32

<=> x - 7 = 0 => x = 7

Vậy Cmin = 32 <=> x = 7

20 tháng 3 2019

a) Ta có: \(A=4x^2+4x+11\)

        \(\Rightarrow A=4x^2+2x+2x+11\)

        \(\Rightarrow A=2x.\left(2x+1\right)+\left(2x+1\right)+10\)

        \(\Rightarrow A=\left(2x+1\right).\left(2x+1\right)+10\)

        \(\Rightarrow A=\left(2x+1\right)^2+10\)

  Ta lại có: \(\left(2x+1\right)^2\ge0\forall x\inℝ\)

             \(\Rightarrow A\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\)

                        \(\Rightarrow2x+1=0\)

                        \(\Rightarrow2x=-1\)

                        \(\Rightarrow x=\frac{-1}{2}\)

      Vậy \(A_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

        

12 tháng 6 2019

a/ \(4x^2+4x+11\)

\(=\left(2x^2\right)+2\cdot2x+1-1+11\)

\(=\left(2x+1\right)^2-1+11\)

\(=\left(2x+1\right)^2+10\)

Có :  \(\left(2x+1\right)^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow GTNN\left(4x^2+4x+11\right)=10\)

   Với \(\left(2x+1\right)^2=0;x=-\frac{1}{2}\)

12 tháng 6 2019

\(a,A=4x^2+4x+11\)

\(A=(2x+1)^2+10\)

Do \((2x+1)^2\ge0\Rightarrow(2x+1)^2+10\ge10\forall x\)

\(\Rightarrow Min_a=10\Rightarrow2x+1=0\Rightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là 10 khi x = -1/2