Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được
2. xét x^2- 6x + 10
= X^2 -6x +9 +1
=(x^2 -3 )^2 +1
Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R
=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R
=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)
=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R
Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0
=> x-3 = 0
=> x=3
Vậy giá tị lớn nhất của P là 1 đạt được khi x=3
ĐKXĐ: x2 khác 0=> x khác 0
A=(x2-4x+4+5x2)/(x2)
=[(x-2)2+5x2)/(x2)
=(x-2)2/(x2)+(5x2)/(x2)
=(x-2)2/(x2)+5
Vì B= (x-2)2/x2 >=0 => Bmin=0 =>x=2(t/m)
=>Amin=0+5=5 <=>x=2
vậy..................
6x^2-4x+4=5x^2+x^2-4x-4
6x^2-4x+4/x^2=5x^2+x^2-4x+4/x^2=5x^2/x^2 +(x-2)^2/x^2= 5+ (x-2)^2/x^2
do (x-2)^2/x^2 >= 0 với mọi x
nên 5+ (x-2)^2/x^2 >= 5
GTNN là 5 khi (x-2)^2/x^2 = 0 rồi cậu giải ra tìm x ý
\(M=\left(x^2-6x+9\right)-4=\left(x-3\right)^2-4\ge-4\)
vậy GTNN của M là -4 khi \(x=3\)
\(N=\left(x^2-2x\frac{5}{2}+\frac{25}{4}\right)-\frac{5}{4}=\left(x-\frac{5}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)
vậy GTNN của N là \(\frac{-5}{4}\)khi \(x=\frac{5}{2}\)
Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)
a)
\(A=x^2+y^2-x+6y+10.\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)
b)
\(B=2x-2x^2-5\)
\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)
\(=3+\frac{1}{x^2+2x+3}\)
Lại có: \(x^2+2x+3\)
\(=\left(x+1\right)^2+2\ge2\)
\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)
Dấu = xảy ra khi x=-1
P2 tương tự
a)
\(A=2x^2-6x\)
\(=\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.\frac{3\sqrt{2}}{2}+\frac{9}{2}-\frac{9}{2}\)
\(=\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\)
Vì \(\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\ge0-\frac{9}{2};\forall x\)
Hay \(A\ge\frac{-9}{2};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x\sqrt{2}-\frac{3\sqrt{2}}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy MIN \(A=\frac{-9}{2}\)\(\Leftrightarrow x=\frac{3}{2}\)
( xin lỗi bro mình thích làm căn )
Các bài khác làm nốt đi
a) \(2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-3x+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)
Vậy GTLN của biểu thức là \(\frac{-9}{2}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
b)
1. \(x-x^2=-\left(x^2-x\right)=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy GTNN của biểu thức là \(\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
2. \(2x-2x^2-5=-2\left(x^2-x+\frac{5}{2}\right)\)
\(=-2\left(x^2-x+\frac{1}{4}+\frac{9}{4}\right)=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le\frac{-9}{2}\)
Vậy GTNN của biểu thức là \(\frac{-9}{2}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(x^2+6x+10\)
\(=\left(x^2+2.x.3+3^2\right)+1\)
\(=\left(x+3\right)^2+1\)
Vì : \(\left(x+3\right)^2\ge0\)
\(\Rightarrow\left(x+3\right)^2+1\ge1\)
Vậy GTNN là 1
Khi \(x+3=0\)
\(x=0-3\)
\(x=-3\)
Ta có : \(x^2+6x+10=\left(x^2+6x+9\right)+1=\left(x+3\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = -3
Vậy giá trị nhỏ nhất của biểu thức là 1 khi x = -3