Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
Ta có : \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|-2y+8\right|\ge0\end{cases}}\)
\(\Rightarrow P=\left|x-2\right|+\left|-2y+8\right|+2018\)đạt GTNN
\(\Leftrightarrow\)\(\hept{\begin{cases}\left|x-2\right|=0\\\left|-2y+8\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\-2y+8=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\-2y=-8\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy P đạt GTNN <=> x = 2 ; y = 4
*<=> : khi và chỉ khi
câu 1
A=-1
câu 2
\(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=8.2\)
\(\left(x+1\right).\left(x+1\right)=16\)
\(\left(x+1\right)^2=16\)
\(\Rightarrow x+1=4\)
vậy x=3
Ta có :
\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)
\(\Rightarrow\)\(2017\le x\le2019\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại )
Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)
Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)
\(\Leftrightarrow\)\(x-2018=0\)
\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) )
Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)
Chúc bạn học tốt ~
để \(\left(x^2+4\right)^2+2017\)bé nhất thì \(\left(x^2+4\right)^2\)bé nhất => \(\left(x^2+4\right)^2=0=>x^2+4=0=>x^2=-4\)mà \(x^2=-4\)là điều vô lý => \(x\in\Phi\)
a) Vì \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(x-3=0\)
\(\Rightarrow x=3\)
Vậy với nghiệm nguyên \(x=3\)thì phương trình đạt GTNN là A=2018
b)Vì \(\left|x-5\right|\ge0\)
\(\Rightarrow\left|x-5\right|+2016\ge2016\)
Dấu "=" xảy ra khi \(x-5=0\)
\(\Rightarrow x=5\)
Vậy với nghiệm nguyên \(x=5\)thì phương trình đạt GTNN là B=2016
c) \(\text{C}=\frac{7}{x-3}\)nhỏ nhất khi \(x-3\)âm và đạt giá trị lớn nhất
\(\Rightarrow x-3< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-3\le-1\)
Dấu "=" xảy ra khi \(x=-1+3=2\)
Vậy với nghiệm nguyên \(x=2\)thì phương trình đạt GTNN là \(\text{C}=\frac{7}{2-3}=-7\)
d)\(\text{D}=\frac{x+8}{x-5}=\frac{x-5+13}{x-5}=\frac{x-5}{x-5}+\frac{13}{x-5}=1+\frac{13}{x-5}\)
D nhỏ nhất khi \(1+\frac{13}{x-5}\)nhỏ nhất
\(1+\frac{13}{x-5}\)nhỏ nhất khi \(\frac{13}{x-5}\)nhỏ nhất
\(\frac{13}{x-5}\)nhỏ nhất khi \(x-5\)âm và đạt GTLN
\(\Rightarrow x-5< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-5\le-1\)
Dấu "=" xảy ra khi \(x=-1+5=4\)
Vậy với \(x=4\)thì biểu thức đạt GTNN là \(\text{D}=1+\frac{4+8}{4-5}=1+\frac{12}{-1}=1-12=-11\)
~Học tốt^^~
Phần kết luận: Vậy với x=...... thì "biểu thức"...
em sửa lại từ phương trình -> biểu thức nha :v a ghi vội nên không để ý
\(\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)
= \(\left(\frac{1}{20}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)
= \(0\cdot\left(\frac{2017}{2018}-\frac{2018}{2019}\right)=0\)
Đặt \(\frac{2017}{2018}-\frac{2018}{2019}=A\)
Ta có :
\(\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right)\left(\frac{2017}{2018}-\frac{2018}{2019}\right)\)
\(=\left(\frac{5}{20}-\frac{4}{20}-\frac{1}{20}\right).A\)
\(=\left(\frac{1}{20}-\frac{1}{20}\right).A\)
\(=0.A\)
\(=0\)
Vậy ...
Chúc bạn học tốt !!!
Cop thì ghi cái nguồn ra không thì đưa cái link cho người ta.
Nguồn: Câu hỏi của Tran Thi Minh Thu - Toán lớp 7 | Học trực tuyến