Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
a) A = \(\sqrt{-x^2+x+\dfrac{3}{4}}=\sqrt{1-\left(x-\dfrac{1}{2}\right)^2}\le\sqrt{1}=1\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
Vậy max A = 1 (khi và chỉ khi x = \(\dfrac{1}{2}\))
b) B = \(\sqrt{\left(2x^2-x-1\right)^2+9}\ge\sqrt{9}=3\) (dấu "=" xảy ra \(\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow x=1;x=-\dfrac{1}{2}\)).
Vậy min B = 3 (khi và chỉ khi x = 1 hoặc x = \(-\dfrac{1}{2}\))
c) C = \(\left|5x-2\right|+\left|5x\right|=\left|2-5x\right|+\left|5x\right|\);
C \(\ge\left|2-5x+5x\right|=\left|2\right|=2\) (dấu "=" xảy ra \(\Leftrightarrow\left(2-5x\right).5x\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2-5x\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x\le0\\2-5x\le0\end{matrix}\right.\)
\(\Leftrightarrow0\le x\le\dfrac{2}{5}\)).
Vậy min C = 2 (khi và chỉ khi \(0\le x\le\dfrac{2}{5}\))
a.
\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)
\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)
b.
\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)
\(\Leftrightarrow x^2-8=5x+1\)
\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)
............................
tương tự ..
c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
=>x-5=0 hoặc x+5=1
=>x=-4 hoặc x=5
d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=7/2 hoặc x=-3/2
e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
=>x-2=0 hoặc 3 căn x+2=1
=>x=2 hoặc x+2=1/9
=>x=-17/9 hoặc x=2
\(A=\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}=\sqrt{\left[\left(x-3\right)-1\right]^2+2}\)
\(=\sqrt{\left(x-4\right)^2+2}\ge\sqrt{2}\)
GTNN CỦA A=CĂN 2 TẠI X=4
\(B=2.\sqrt{x^2+3x+\frac{9}{4}+\frac{11}{4}}=2.\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}=\sqrt{4.\left(x+\frac{3}{2}\right)^2+11}\ge\sqrt{11}\)
GTNN CỦA B=CĂN 11 TẠI X=-3/2
bài 2
\(A=\sqrt{-2x^2+7}\le\sqrt{7}\)
GTLN CỦA A=CĂN 7 TẠI X=0
\(B=1+\sqrt{-\left(x^2-6x+7\right)}=1+\sqrt{-\left(x-3\right)^2+2}\)
để B lớn nhất thì \(\sqrt{-\left(x-3\right)^2+2}\) lớn nhất
mà\(\sqrt{-\left(x-3\right)^2+2}\le2\)
=> GTLN CỦA B=1+2 =3 TẠI X=3
\(C=7+\sqrt{-4\left(x^2-x\right)}=7+\sqrt{-4\left(x-\frac{1}{2}\right)^2+1}\le7+1=8\)
GTLN là 8 tại x=1/2
a) \(\sqrt{25x^2-10x+1}=x+2\)
<=> \(\sqrt{\left(5x-1\right)^2}=x+2\)
<=> \(\left|5x-1\right|=x+2\)
TH1: 5x - 1 \(\ge\)0 <=> x \(\ge\)1/5
Khi đó pt trở thành: 5x - 1 = x + 2
<=> 4x = 3 <=> x = 3/4 (tm)
TH2: 5x - 1 < 0 <=> x < 1/5
Khi đó pt trở thành: 1 - 5x = x + 2
<=> -6x = 1 <=> x = -1/6 (tm)
Vậy S = {3/4; -1/6}
b) \(\sqrt{4x^2+12x+9}=7\)
<=> \(\sqrt{\left(2x+3\right)^2}=7\)
<=> \(\left|2x+3\right|=7\)
TH1: 2x + 3 \(\ge\)0 <=> x \(\ge\)-3/2
Khi đó pt trở thành: 2x + 3 = 7 <=> 2x = 4 <=> x = 2 (Tm)
TH2: 2x + 3 < 0 <=> x < -3/2
Khi đó pt trở thành: -2x - 3 = 7
<=> -2x = 10 <=> x = -5 (tm)
Vậy S = {-5; 2}
a) CĂN ký hiệu =v nhé
8 = 2.22 ; x2 -4xy + (2y)2 = (x-2y)2
=> A = 2v2/(x-2y)
b;c tương tự
chắc gõ dấu + nhưng quên ấn Shift thành dấu = r`
\(\sqrt{4x^2+4x+1}+\sqrt{25x^2+10x+1}\)
\(=\sqrt{\left(2x+1\right)^2}+\sqrt{\left(5x+1\right)^2}\)
\(=\left|2x+1\right|+\left|5x+1\right|\ge\frac{3}{5}\)
Dấu = khi \(x=-\frac{1}{5}\)
vào đây xem câu TL bạn nhé
https://www.youtube.com/watch?v=fvGaHwKrbUc