Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)
\(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)
\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)
Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên
\(\Leftrightarrow10⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)
\(\Rightarrow x=-1;0;-3;2\)
Vậy.......................
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(A=2x^3+x^2+\frac{2x+2}{2x+1}=2x^3+x^2+1+\frac{1}{2x+1}\)
Đề bài cho x nguyên nên \(2x^3+x^2+1\)cũng nguyên
Để A nguyên \(\Leftrightarrow\frac{1}{2x+1}\)nguyên\(\Rightarrow1⋮2x+1\)\(2x+1\inƯ\left(-1\right)=\left(1;-1\right)\)
2x+1=1 => x=0
2x+1=-1 =>x=-1
bạn ơi đề bài là
\(\frac{2x^3+x^2+2x+2}{2x+1}\)
hay 2x^3+x ^2+2x+\(\frac{2}{2x+1}\)
Answer:
\(M=\left(\frac{x}{x-3}+\frac{3x^2+3}{9-x^2}+\frac{2x}{x+3}\right):\frac{x+1}{3-x}\)
ĐKXĐ:
\(x-3\ne0\)
\(9-x^2\ne0\)
\(x+3\ne0\)
\(x+1\ne0\)
(Ý này trình bày trong vở bạn xếp vào vào cái ngoặc "và" nhé!)
\(\Leftrightarrow\hept{\begin{cases}x\ne\pm3\\x\ne-1\end{cases}}\)
\(=\frac{-x\left(3+x\right)+3x^2+3+2x\left(3-x\right)}{\left(3-x\right)\left(3+x\right)}.\frac{\left(3-x\right)}{x+1}\)
\(=\frac{9x+3}{\left(3+x\right)\left(x+1\right)}\)
\(=\frac{3}{x+1}\)
Có: \(x^2+x-6=0\)
\(\Leftrightarrow x^2+6x-x-6=0\)
\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+6=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=1\end{cases}}\) (Thoả mãn)
Trường hợp 1: \(x=1\Leftrightarrow M=\frac{3}{1+1}=\frac{3}{2}\)
Trường hợp 2: \(x=-6\Leftrightarrow M=\frac{3}{-6+1}=\frac{-3}{5}\)
Để cho biểu thức M nguyên thì \(\frac{3}{x+1}\inℤ\)
\(\Rightarrow x+1\inƯ\left(3\right)\)
\(\Rightarrow\orbr{\begin{cases}x+1=1\\x+1=3\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\) (Thoả mãn)
\(\frac{x^3-2x^2+4}{x-2}\inℤ\Leftrightarrow x^3-2x^2+4⋮x-2\)
\(\Leftrightarrow x^3-2x^2-\left(x^3-2x^2\right)+4⋮x-2\Leftrightarrow4⋮x-2\)
\(\Leftrightarrow x-2\in\left\{-1;2;-2;1;-4;4\right\}\Leftrightarrow x\in\left\{1;4;0;3;-2;6\right\}\)
b, \(\frac{x^3-x^2+2}{x-1}\inℤ\Leftrightarrow x^3-x^2+2⋮x-1\)
\(\Leftrightarrow x^3-x^2-\left(x^3-x^2\right)+2⋮x-1\)
\(\Leftrightarrow2⋮x-1\Leftrightarrow x-1\in\left\{-1;1;-2;2\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-1;3\right\}\)
Bài 1:
\(Q=x^4+2x^2+2\left(x^2+1\right)\left(x^2+6x-1\right)+\left(x^2+6x-1\right)^2\)
\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+\left(x^4+2x^2+1\right)\right]-1\)
\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2-6x+1\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right]-1\)
\(Q=\left(x^2+6x-1+x^2+1\right)^2-1\)
\(Q=\left(2x^2+6x\right)^2-1\)
\(Q=99^2-1\)
\(Q=9800\)
Bài 2:
Đặt \(A=\left(2+1\right)\left(2^2+1\right)...\left(x^{64}+1\right)+1\)
\(\left(2-1\right)\cdot A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)
\(1\cdot A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)
\(A=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(A=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(A=2^{128}-1^2+1\)
\(A=2^{128}\left(đpcm\right)\)
Bài 3:
Để C là số nguyên thì x2 - 3 ⋮ x - 2
<=> x (x - 2) + 2x - 3 ⋮ x - 2
mà x (x - 2) ⋮ x - 2
=> 2x - 3 ⋮ x - 2
<=> 2 (x - 2) + 3 ⋮ x - 2
mà 2 (x - 2) ⋮ x - 2
=> 3 ⋮ x - 2
=> x - 2 thuộc Ư(3) = { 1; 3; -1; -3 }
Ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy x thuộc { -1; 1; 3; 5 }
x -2x 2 3 +3x +50 x+3 x -x 3 2 -3x 2 -5x 2 -5x +3x 5x +15x 2 +50 18x +50 +18 -18x -54 -4
\(\frac{x^3-2x^2+3x+50}{x+3}=\left(x^2-5x+18\right)\left(x+3\right)-4=\left(x^2-5x+18\right)+\frac{-4}{x+3}\)
Đề \(\left(x^3-2x^2+3x+50\right)\)chia hết cho \(\left(x+3\right)\)thì \(-4\)chia hết \(\left(x+3\right)\)
mà \(x+3\)là ước của -4.
\(\Rightarrow x+3=-1;1;-2;2-4;4\)
\(\cdot x+3=-1\Rightarrow x=-4\)(nhận)
\(\cdot x+3=1\Rightarrow x=2\)(nhận)
\(\cdot x+3=-2\Rightarrow x=-5\)(nhận)
\(\cdot x+3=2\Rightarrow x=-1\)(nhận)
\(\cdot x+3=-4\Rightarrow x=-7\)(nhận)
\(\cdot x+3=4\Rightarrow x=1\)(nhận)
Vậy \(x=-7;-5;-4;-1;1;2\)thì \(\left(x^3-2x^2+3x+50\right)\)chia hết cho \(\left(x+3\right)\)
\(\frac{2x+3}{x-5}\)\(=\frac{2\left(x-5\right)+13}{x-5}\)
\(=\frac{2\left(x-5\right)}{x-5}+\frac{13}{x-5}\)
\(=2+\frac{13}{x-5}\)
để biểu thức trên có giá trị nguyên <=> \(\frac{13}{x-5}\)thuộc Z
mà \(x\)thuộc Z => \(x-5\)thuộc ước của \(13\)
=> \(x-5\)thuộc \(\left(1;-1;13;-13\right)\)
=>\(x\)thuộc \(\left(6;4;18;-8\right)\)
vậy ....
\(\frac{x^3-2x^2+4}{x-2}\) \(=\frac{x^2\left(x-2\right)+4}{x-2}\)
\(=x^2+\frac{4}{x-2}\)
để biểu thức trên đạt giá trị nguyên <=> \(\frac{4}{x-2}\) thuộc giá trị nguyên
mà \(x\) là số nguyên => \(x-2\)thuộc ước của \(4\)
=> \(x-2\) thuộc \(\left(1;-1;2;-2;4;-4\right)\)
=> \(x\)thuộc \(\left(3;1;4;0;6;-2\right)\)
vậy...