Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y
=>x2+2y2+ 1 ≥ 1
=>Phân thức trên luôn có nghĩa
\(3x^2+7x-20=0\\ < =>3x^2+12x-5x-20=0\\ < =>3x\left(x+4\right)-5\left(x+4\right)=0\\ < =>\left(x+4\right)\left(3x-5\right)=0\\ =>\left\{{}\begin{matrix}x+4=0\\3x-5=0\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=-4\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy: Tập nghiệm của phương trình là \(S=\left\{-4;\dfrac{5}{3}\right\}\)
do câu hỏi của lớp 8 nên mình làm ntn nha:
pt <=> \(3x^2+7x=20\)
<=> \(x^2+\dfrac{7}{3}x=\dfrac{20}{3}\)
<=> \(x^2+2.\dfrac{\dfrac{7}{3}}{2}x+\dfrac{49}{36}-\dfrac{49}{36}=\dfrac{20}{3}\) <=> \(\left(x+\dfrac{7}{6}\right)^2=\dfrac{49}{36}+\dfrac{20}{3}\)
<=> \(\left(x+\dfrac{7}{6}\right)^2=\dfrac{289}{36}\)
<=> x+7/6 = \(\pm\sqrt{\dfrac{289}{36}}\)
<=> \(\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-4\end{matrix}\right.\)
Đặt tính \(2n^2-n+2\) : \(2n+1\) sẽ bằng n - 1 dư 3
Để chia hết thì 3 phải chia hết cho 2n + 1 hay 2n + 1 là ước của 3
Ư(3) = {\(\pm\) 3; \(\pm\) 1}
\(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)
\(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
\(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)
\(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)
Vậy \(n=\left\{0;-2;\pm1\right\}\)
Đề sai nên mình sửa chút , 214 chứ không phải 2014 .
(x-214)/86 + (x-132)/84 + (x-54)/82 = 6
- (x-214)/86 + (x-132)/84 + (x-54)/82 - 6 =0
- (x-214)/86 - 1 + (x-132)/84 -2 +(x-54)/82 - 3 =0
- (x-300)/86 + (x-300)/84 +(x-300)/82 =0
- (x - 300 )(1/86 +1/84 +1/82 )=0
- x - 300=0
- x =300 vì 1/86 +1/84 +1/82 khác 0.
a) \(x^3-\dfrac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)
\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)
d) \(x^2\left(x-3\right)+27-9x=0\)
\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)
\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3.\)
Bài 1:
a) \(9x^2-6x+2\)
\(\Leftrightarrow9x^2-6x+1+1\)
\(\Leftrightarrow\left(3x-1\right)^2+1\)
Vì \(\left(3x-1\right)^2\ge0\forall x,1>0\)
\(\Rightarrow9x^2-6x+2\) luôn dương với mọi x.
b) \(x^2+x+1\)
\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x,\dfrac{3}{4}>0\)
\(\Rightarrow x^2+x+1\) luôn dương với mọi x.
Bài 2 :
a) \(A=x^2-3x+5\)
\(\Leftrightarrow A=x^2-3x+2+3\)
\(\Leftrightarrow A=\left(x-2\right)\left(x-1\right)+3\)
Vì \(\left(x-2\right)\left(x-1\right)\ge0\forall x\) => \(A\ge3\)
Vậy GTNN A đạt được = 3 khi và chỉ khi x = 2 hoặc x = 1.
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(\Leftrightarrow B=4x^2-4x+1+x^2+4x+4\)
\(\Leftrightarrow B=5x^2+5\)
\(\Leftrightarrow B=5\cdot\left(x^2+1\right)\)
Vì \(x^2+1\ge1\forall x\)
=> GTNN của B đạt được = 5 khi và chỉ khi x = 0.
Bài 3 :
a) \(A=-x^2+2x+4\)
Làm tương tự ta có \(A_{MAX}=5\) khi và chỉ khi x = 1.
b) \(B=-x^2+4x\)
Làm tương tự ta có \(B_{MAX}=4\) khi và chỉ khi x = 2.
a) \(7x^2-28=0\Leftrightarrow7\left(x^2-4\right)=0\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) vậy \(x=2;x=-2\)
b) \(\left(2x+1\right)+x\left(2x+1\right)=0\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\) vậy \(x=-1;x=\dfrac{-1}{2}\)
c) \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-5=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\) vậy \(x=0;x=5;x=-5\)
d) \(9\left(3x-2\right)=x\left(2-3x\right)\Leftrightarrow9\left(3x-2\right)=-x\left(3x-2\right)\)
\(\Leftrightarrow9\left(3x-2\right)+x\left(3x-2\right)=0\Leftrightarrow\left(9+x\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}9+x=0\\3x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\3x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x=-9;x=\dfrac{2}{3}\)
e) \(5x\left(x-3\right)-2x+6=0\Leftrightarrow5x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(5x-2\right)\left(x-3\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}5x-2=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\x=3\end{matrix}\right.\) vậy \(x=\dfrac{2}{5};x=3\)
\(A=3x^2-12x+10\\ A=3x^2-12x+12-2\\ A=\left(3x^2-12x+12\right)-2\\ A=3\left(x^2-4x+4\right)-2\\ A=3\left(x^2-2\cdot x\cdot2+2^2\right)-2\\ A=3\left(x-2\right)^2-2\\ Do\left(x-2\right)^2\ge0\forall x\\ \Rightarrow3\left(x-2\right)^2\ge0\forall x\\ \Rightarrow A=3\left(x-2\right)^2-2\ge-2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{ Vậy }A_{\left(Min\right)}=-2\text{ khi }x=2\)
A=3x2 - 12x + 10
A= (3x2- 2.3x.2+22)-22+10
A= (3x-2)2+6 \(\ge\) +6
Vậy min A = 6 . Dấu = xảy ra khi 3x -2 = 0
3x= 2
x= \(\dfrac{2}{3}\)
Để phương trình 2x+m=x-1 nhận x=-2 làm nghiệm thì
Thay x=-2 vào phương trình 2x+m=x-1, ta được:
\(2\cdot\left(-2\right)+m=-2-1\)
\(\Leftrightarrow m-4=-3\)
hay m=-3+4=1
Vậy: Khi m=1 thì phương trình 2x+m=x-1 nhận x=-2 làm nghiệm