Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề \(D=25x\left(x.7\right)-7\)
\(\Rightarrow D=25x^2.7-7\)
\(\Rightarrow D=7\left(25x^2-1\right)\)
Do \(25x^2\ge0;1>0\Rightarrow25x^2-1\le-1\)
\(\Rightarrow D\le-7\)
Dấu "=" xảy ra khi \(x=0\)
Vậy Max D = -7 <=> x = 0
1. We ( donate ) ____ money for disabled people since 2012
2. THe young ( help _____ the poor with ( provide ) ___ money , work and even accommidation for 2 years .
3. We can ( help ) ___ people in a flooded area by ( take ) ___ them to the higher and drier area .
hộ e với
\(D=25x^2.7-7\)
\(\Rightarrow D=7\left(25x^2-1\right)\)
Do \(25x^2\ge0;1>0\Rightarrow25x^2-1\le-1\Rightarrow D\le-7\)
Dấu = xảy ra khi x=0
Vậy Max D=-7 khi x=0
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
a,
(x2-x+1)(x+1)-x3+3x=15
x3-x2+x+x2-x+1-x3+3x=15
x3-x3-x2+x2+x-x+3x+1=15
3x+1=15
3x=15-1
3x=14
x=14/3
b,
(x+3)(x-2)+3x=\(\frac{4}{x+\frac{3}{4}}\)
x2-2x+3x-6+3x=\(\frac{4}{x+\frac{3}{4}}\)
x2-2x+3x+3x-6=\(\frac{4}{x+\frac{3}{4}}\)
Tới đây hết biết , đề có gì sai sai sao ý !
c,
(x2-5)(x+2)+5x=2x2+17
x3+2x2-5x-10+5x=2x2+17
x3+2x2-5x+5x-10=2x2+17
x3+2x2-10=2x2+17
x3-10=17
x3=17+10
x3=27
\(\Rightarrow x=3\)(Vì : 33=27)
_k_ nhé bn
Nhân ra thôi bạn, có hằng đẳng thức gì đâu !
a) \(\left(x^2-x+1\right)\left(x+1\right)-x^3+3x=15\)
\(\Leftrightarrow\left(x^2-x+1\right)\cdot x+x^2-x+1-x^3+3x=15\)
\(\Leftrightarrow x^3-x^2+x+x^2-x+1-x^3+3x=15\)
\(\Leftrightarrow1+3x=15\Leftrightarrow3x=14\Leftrightarrow x=\frac{14}{3}\)
b) \(\left(x+3\right)\left(x-2\right)+3x=4\cdot\left(x+\frac{3}{4}\right)\)
\(\Leftrightarrow x^2+3x-2x-6+3x=4x+3\)
\(\Leftrightarrow x^2+4x-6=4x+3\)
\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
c) \(\left(x^2-5\right)\left(x+2\right)+5x=2x^2+17\)
\(\Leftrightarrow x^3-5x+2x^2-10+5x=2x^2+17\)
\(\Leftrightarrow x^3=27\Leftrightarrow x=3\)
Ta có :
\(4x^2+12x+10>0\)
\(\Leftrightarrow\)\(\left(4x^2+12x+9\right)+1>0\)
\(\Leftrightarrow\)\(\left[\left(2x\right)^2+2.2x.3+3^2\right]+1>0\)
\(\Leftrightarrow\)\(\left(2x+3\right)^2+1\ge1>0\)
Vậy \(4x^2+12x+10\) luôn dương với mọi giá trị x
Chúc bạn học tốt ~