Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(C=3m^2-6m=3m^2-6m+3-3\)
\(=3\left(m^2-2m+1\right)-3\)
\(=3\left(m-1\right)^2-3\ge-3\forall m\)
Vậy: Min C = -3 tại m = 1
Bài 2: \(a,\left(x+3\right)^2-\left(x-3\right)\left(x+3\right)=5\)
\(\Leftrightarrow x^2+6x+9-x^2+9=5\)
\(\Leftrightarrow6x=-13\)
\(\Leftrightarrow x=-\frac{13}{6}\)
Bài 1 : A=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)\)
A=\(-\left(x-\frac{1}{2}\right)^2-\frac{1}{4}< \)hoặc bằng -1/4 Vậy A max =1/4 khi x=1/2
Bài 1:
a: \(A=x^2-30x+225-114=\left(x-15\right)^2-114>=-114\forall x\)
Dấu '=' xảy ra khi x=15
b: \(B=4a^2+4a+1+1=\left(2a+1\right)^2+1>=1\forall a\)
Dấu '=' xảy ra khi a=-1/2
Bài 2:
a: \(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x=2
\(A=2x^2+9y^2-6xy-6x-12y+2004\)
\(A=\left(3y\right)^2-2\cdot3y\cdot2+2^2+2x^2-6x+2000\)
\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2\right)+1997,75\)
\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1997,75\)
\(A\ge1997,75\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}}\)
Vậy,.........
Sửa cho Bonking ( bắt đầu dòng 3 )
\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right)+2000\)
\(A=\left(3y-2\right)^2+2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+2000\)
\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}+2000\)
\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1995,5\)
\(A\ge1995,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}\)
Vậy,.........
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
1. Câu hỏi của Quỳnh Như - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu 1 tại link này.
\(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì: \(-\left(x-\frac{1}{2}\right)^2\le0\)
=> \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy GTLN của B là \(\frac{1}{4}\) khi \(x=\frac{1}{2}\)