Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x}{\left(x+4\right)^2}\)
Đặt \(x+4=y\Leftrightarrow x=y-4\) \(\left(y\ne0\right)\)
\(A=\frac{y-4}{y^2}\)
\(A=\frac{y}{y^2}-\frac{4}{y^2}\)
\(-A=\left(\frac{2}{y}\right)^2-\frac{1}{y}\)
\(-A=\left[\left(\frac{2}{y}\right)^2-\frac{1}{y}+\left(\frac{1}{4}\right)^2\right]-\frac{1}{16}\)
\(-A=\left(\frac{2}{y}-\frac{1}{4}\right)^2-\frac{1}{16}\)
Do : \(\left(\frac{2}{y}-\frac{1}{4}\right)^2\ge0\forall y\in R\)
\(\Rightarrow-A\ge-\frac{1}{16}\)
\(\Leftrightarrow A\le\frac{1}{16}\)
Dấu " = " xảy ra khi :
\(\frac{2}{y}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{2}{y}=\frac{1}{4}\)
\(\Leftrightarrow y=8\)
Lại có : \(x=y-4\Rightarrow x=4\)
Vậy \(A_{Max}=\frac{1}{16}\Leftrightarrow x=4\)
a) Ta có : | a + 1 | luôn lớn hơn hoặc bằng 0
=> | a + 1 | + 5 luôn lớn hơn hoặc bằng 5
Dấu "=" xảy ra <=> a + 1 = 0
=> a = -1
Vậy, A min = 5 khi và chỉ khi a = -1
Ta có: \(\left|a+1\right|\ge0\forall a\)
\(\Rightarrow\left|a+1\right|+5\ge5\forall x\)
Dấu ' = ' xảy ra \(\Leftrightarrow\left|a+1\right|=0\Leftrightarrow a=-1\)
Vậy GTNN của biểu thức \(\left|a+1\right|+5\)là \(5\Leftrightarrow a=-1\)
\(A=|x+1|+5\ge5\forall x\)
=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)
\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có: \(x^2+3\ge3\forall x\)
Min x2 + 3 = 3 tại x = 0
Khi đó: Max B = 1+ 12/3 = 5 tại x = 0
=.= hk tốt!!
|x+1 lớn hơn hoặc bằng 0
=> |x+1|+5 lớn hơn hoặc bằng 5
Dấu = xảy ra khi x+1=0 <=> x=-1
Vậy Min A = 5 khi x=-1
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)