Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lập bảng thay các giá trị nguyên trong khoảng vào hàm rồi calc x:
x=0 ra kq:-504
x=1 ra kq:-515(GTNN)
x=2 ra kq:-472
x=3 ra kq:-339(GTLN)
\(\hept{\begin{cases}a+b+c=4\\a^2+b^2+c^2=6\end{cases}}\)
\(b^2+c^2=6-a^2\Rightarrow\left(b+c\right)^2-2bc=6-a^2\)
\(\Rightarrow2bc=\frac{\left(b+c\right)^2-6+a^2}{2}\)
\(=\frac{\left(4-a\right)^2-6+a^2}{2}\left(Do:a+b+c=4\right)\)
\(=\frac{2a^2-8a+10}{2}=a^2-4a+5\)
\(\Rightarrow P=a^3+bc\left(b+c\right)=a^3+\left(a^2-4a+5\right)\left(4-a\right)\left(Do:a+b+c=4\right)\)
\(=a^3+4a^2-16a+20-a^3+4a^2-5a\)
\(=8a^2-21a+20\)
\(=8\left(a^2-2.\frac{21}{16}a+\frac{441}{256}\right)+\frac{199}{32}\)
\(=8\left(a-\frac{21}{16}\right)^2+\frac{119}{32}\)
.............................................................
\(P=\sqrt{x^4+x^2y^2}+x^2=\sqrt{x^4+\frac{1}{x^2}}+x^2\)
Ta có: \(x^4+\frac{1}{x^2}=x^4+\frac{1}{8x^2}+\frac{1}{8x^2}+...+\frac{1}{8x^2}\ge9\sqrt[9]{x^4.\left(\frac{1}{8x^2}\right)^8}\)
\(=9\sqrt[9]{\frac{1}{8^8.x^{12}}}\)
=> \(P=3\sqrt[18]{\frac{1}{8^8.x^{12}}}+x^2\)
\(=\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+x^2\)
\(\ge4\sqrt[4]{\left(\sqrt[18]{\frac{1}{8^8x^{12}}}\right)^3.x^2}\)
\(=4.\left(\frac{1}{8^{\frac{1}{3}}.x^{\frac{1}{2}}}\right).x^2=2\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^4=\frac{1}{8x^2}\\x^2=\sqrt[8]{\frac{1}{8^8x^{12}}}\end{cases}}\)<=> x^2 = 1/2 khi đó y = 2 , x = \(\frac{1}{\sqrt{2}}\)
Vậy GTNN của P = 2.