K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

ĐKXĐ : \(-2\le x\le7\)

- Áp dụng BĐT bunhiacopxky có :

\(y^2=\left(\sqrt{x+2}+\sqrt{7-x}\right)^2\le\left(1^2+1^2\right)\left(x+2+7-x\right)=18\)

\(\Leftrightarrow y\le3\sqrt{2}\)

- Dấu " = " xảy ra <=> \(\sqrt{x+2}=\sqrt{7-x}\)\(\Leftrightarrow x=\dfrac{5}{2}\)

-Lại có : \(y=\sqrt{x+2}+\sqrt{7-x}\ge\sqrt{x+2+7-x}=3\)

- Dấu " = " xảy ra <=> \(\sqrt{\left(x+2\right)\left(x-7\right)}=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)

Vậy ...

 

 

21 tháng 10 2016

dùng máy tính bỏ túi fx-570es plus là ra ngay

 

8 tháng 5 2017

- Áp dụng BĐT Bunhia- Cốp xki ta có:
\(\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)\)\(=2.4=8\).
Suy ra: \(\sqrt{x-1}+\sqrt{5-x}\le2\sqrt{2}\).
Vậy max \(\sqrt{x-1}+\sqrt{5-x}=2\sqrt{2}\) khi:
\(\sqrt{x-1}=\sqrt{5-x}\)\(\Leftrightarrow x-1=5-x\)\(\Leftrightarrow x=3\).
- Ta có: \(\sqrt{x-1}+\sqrt{5-x}\ge\sqrt{x-1+5-x}=\sqrt{4}=2\).
Vậy GTNN của \(\sqrt{x-1}+\sqrt{5-x}=2\) khi:
\(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\).

12 tháng 5 2016

Điều kiện \(x\ge-1\) và \(y\ge-2\). Gọi T là tập giá trị  của K. Khi đó \(m\in T\) khi và chỉ khi hệ sau có nghiệm :

\(\begin{cases}x-3\sqrt{x+1}=3\sqrt{y+2}-y\\x+y=m\end{cases}\) \(\Leftrightarrow\begin{cases}3\left(\sqrt{x+1}+\sqrt{y+2}\right)=m\\x+y=m\end{cases}\) (1)

Đặt \(u=\sqrt{x+1};v=\sqrt{y+2}\), điều kiện \(u\ge0;v\ge0\)

Thay vào (1), ta được : 

\(\begin{cases}3\left(u+v\right)=m\\u^2+v^2=m+3\end{cases}\) \(\Leftrightarrow\begin{cases}u+v=\frac{m}{3}\\uv=\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)\end{cases}\)

Hay u và v là nghiệm của phương trình :

\(t^2-\frac{m}{3}t+\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)=0\)

\(\Leftrightarrow18t^2-6mt+m^2-9m-27=0\)  (2)

Hệ (1) có nghiệm x, y thỏa mãn điều kiện  \(x\ge-1\) và \(y\ge-2\) khi và chỉ khi (2) có nghiệm không âm, hay :

\(\begin{cases}\Delta'=-9\left(m^2-18m-54\right)\ge0\\S=\frac{m}{3}\ge0\\P=\frac{m^2-9m-27}{18}\ge0\end{cases}\)

\(\Leftrightarrow\frac{9+3\sqrt{21}}{2}\le m\le9+3\sqrt{15}\)

Vậy \(T=\left[\frac{9+3\sqrt{21}}{2};9+3\sqrt{15}\right]\)

Suy ra Max K = \(\frac{9+3\sqrt{21}}{2}\)

           Min K = \(9+3\sqrt{15}\)

12 tháng 5 2016

gọi T là tập hợp giá trị của F

\(\begin{cases}\sqrt[3]{x}\left(\sqrt[3]{x}-1\right)+\sqrt[3]{y}\left(\sqrt[3]{y}-1\right)=\sqrt[3]{xy}\\\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{xy}=m\end{cases}\)

Đặt S = \(\sqrt[3]{x}+\sqrt[3]{y},P=\sqrt[3]{xy}\) điều kiện \(S^2\ge4P\)hệ 1 trở thành 

\(\begin{cases}S^2-S-3P=0\\S+P=m\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}S^2+2S-3m=0\\P=m-s\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}m=\frac{S^2+2S}{3}\\P=\frac{S^2-S}{3}\end{cases}\)

Ta có \(S^2\ge4P\Leftrightarrow S^2\ge\frac{4S^2-4S}{3}\Leftrightarrow s^2-4S\le0\Leftrightarrow0\le S\le4\)

từ đó , hệ 1 có nghiệm \(\Leftrightarrow\)hệ 2 có nghiệm (S;P) thỏa mãn \(S^2\ge4P\Leftrightarrow\)phương trình \(S^2+2S-3m=0\)có nghiệm S thỏa mãn điều kiện 0\(0\le S\le4\)tức là

\(\Delta'=1+3m\ge0\)và \(\left[\begin{array}{nghiempt}0\le-1-\sqrt{1+3m}\le4\\0\le-1+\sqrt{1+3m}\le4\end{array}\right.\)\(\Leftrightarrow\)\(\begin{cases}m\ge-\frac{1}{3}\\1\le\sqrt{1+3m}\le5\end{cases}\)\(\Leftrightarrow\)\(0\le m\le8\)

vậy max F=8, min=0

 

8 tháng 12 2016

\(y=\sqrt{\left(x^2-2x+1\right)+4}=\sqrt{\left(x-1\right)^2+4}\ge\sqrt{4}=2\)

Đẳng thức xảy ra khi x = 1

Vậy min y = 2 khi x = 1

 

8 tháng 12 2016

cam on bn nhe