K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

1.

Theo bài ra ta có:

\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10

Ta có:

\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Suy ra:

x = 2 . 8 = 16

y = 2 . 12 = 24

z = 2 . 15 = 30

2/

Đặt \(\frac{x}{2}=\frac{y}{5}=k\)

Ta có :x = 2k ; y = 5k

=>x . y = 2k . 5k = 10k2 = 10 => k= 1 => k = ±1

Thay k = 1 ta có : x = 2 . 1 = 2     ;      y = 5 . 1 = 5

Thay k = -1 ta có : x = 2 . (-1) = -2    ;    y = 5 . (-1) = -5

Vậy x = ±2   ;  y = ±5

3/

Giải:

Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .

Theo bài ra ta có:

\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)

Suy ra :

a = 35 . 9 = 315

b = 35 . 8 = 280

c = 35 . 7 = 245

d = 35 . 6 = 210

Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .

24 tháng 4 2019

ta có: x-y-z=0

=> x=y+z

    y=x-z

    -z=y-x

thay vào biểu thức B ta có: \(B=\left(1-\frac{z}{x}\right)\)\(\left(1-\frac{x}{y}\right)\)\(\left(1+\frac{y}{z}\right)\)

\(\left(\frac{x-z}{x}\right)\)\(\left(\frac{y-x}{y}\right)\)\(\left(\frac{z+y}{z}\right)\)=\(\frac{y}{x}\).\(\frac{-z}{y}\).\(\frac{x}{z}\)=-1

vậy B=-1

24 tháng 4 2019

THANKS YOU

AH
Akai Haruma
Giáo viên
25 tháng 8 2024

Lời giải:

Vì $x,y,z$ tỉ lệ với $5,4,3$ nên:

$\frac{x}{5}=\frac{y}{4}=\frac{z}{3}$

Đặt $\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k; y=4k; z=3k$.

Khi đó:

$P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}$

$=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}$

13 tháng 10 2021

Áp dungk KT \(\left|x\right|\ge0\)\(\forall\)\(x\)

BG :

Ta có : \(\left|x-2\right|\ge0\)\(\forall\)\(x\)\(4\ge0\)

nên : \(4\left|x-2\right|\ge0\)\(\forall\)\(x\)

\(\Rightarrow\)\(10-4\left|x-2\right|\ge10-0\)\(\forall\)\(x\)

\(\Rightarrow\)\(10-4\left|x-2\right|\ge10\)\(\forall\)\(x\)

Để \(10-4\left|x-2\right|\)đạt GTLN thì \(\Leftrightarrow\)\(4\left|x-2\right|\)đạt giá trị nhỏ nhất

\(\Leftrightarrow\)\(4\left|x-2\right|=0\)

\(\Leftrightarrow\)\(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTLN của B đạt được \(=10\)khi \(x=2\)