Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ B = (x+y)((x+y)2 - 3xy)+(x+y)2 - 2xy = 2 - 5xy = 2 - 5x(1-x)=5x2 - 5x + 2 = (x√5 - √5 /2)2 +3/4 >= 3/4
Đạt GTNN là 3/4 khi x=y=1/2
2/ P = xy = x(6-x)=-x2 +6x = 9 - (x-3)2 <=9
GTLN là 9 khi x=y=3
Xét \(x^2+y^2-xy=4\)
\(\Rightarrow x^2-2xy+y^2+xy=4\)
\(\Rightarrow\left(x-y\right)^2+xy=4\)
\(\Rightarrow xy=-\left(x-y\right)^2+4\)
Lại có: \(C=x^2+y^2=xy+4\)
\(=-\left(x-y\right)^2+4+4\)
\(=-\left(x-y\right)^2+8\)
Vì \(\left(x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow-\left(x-y\right)^2\le0\forall x,y\)
\(\Rightarrow-\left(x-y\right)^2+8\le8\forall x,y\)
hay\(C\le8\forall x,y\)
GTLN là 8
Dấu "=" xảy ra khi: \(\left(x-y\right)^2=0\Rightarrow x=y\)
#DDN
\(A=4x^2+y^2+xy+4x+2y+3=4x^2+x\left(y+4\right)+\frac{\left(y+4\right)^2}{16}+y^2-\frac{\left(y+4\right)^2}{16}+2y+3\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{16y^2-y^2-8y-16+32y+48}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15y^2+24y+32}{16}\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y^2+\frac{24}{15}y+\frac{16}{25}\right)+\frac{112}{5}}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y+\frac{4}{5}\right)^2+\frac{112}{5}}{16}\ge\frac{\frac{112}{5}}{16}=\frac{7}{5}\)Đẳng thức xảy ra khi \(\hept{\begin{cases}2x+\frac{y+4}{4}=0\\y+\frac{4}{5}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)
\(B=-x^2-y^2-2xy=-\left(x+y\right)^2\le0\)
Đẳng thức xảy ra khi x = -y
\(2A=2x^2+2y^2-2xy+2x+2y\)
\(2A=x^2-2xy+y^2+x^2+2x+1-1+y^2+2y+1-1\)
\(2A=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)-1-1\)
\(2A=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\ge-2\)
\(\Rightarrow2A\le-2\Rightarrow A\le-1\)
\(\Rightarrow A_{min}=-1\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\x=-1\\y=-1\end{cases}\Rightarrow}x=y=-1}\)
CHÚC BẠN HỌC TỐT NHÉ
nha ! CẢM ƠN!!!!!
\(A=-x^2-y^2+x+y+3\)
\(=-\left(x^2+y^2-x-y-3\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2-2.y.\frac{1}{2}+\frac{1}{4}-3,5\right)\)
\(=-\left(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-3,5\right)\)
\(=3,5-\left(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2\right)\le3,5\)
Max A = 3,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)
Câu b tương tự nhen bạn