K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

a)Ta thấy:

\(\left|x\right|+2003\ge2003\)

\(\Rightarrow\frac{1}{\left|x\right|+2003}\le\frac{1}{2003}\)

\(\Rightarrow\frac{2002}{\left|x\right|+2003}\le\frac{2002}{2003}\)\(\Rightarrow A\le\frac{2002}{2003}\)

Dấu = khi x=0

Vậy MaxA=\(\frac{2002}{2003}\Leftrightarrow x=0\)

b)Ta thấy:

\(-\left|x\right|\le0\)\(\Rightarrow-\left|x\right|+2002\le2002\)

\(\Rightarrow\frac{-\left|x\right|-2002}{2003}\le\frac{-2002}{2003}\Rightarrow B\le-\frac{2002}{2003}\)

Dấu = khi x=0

Vậy MaxB=\(-\frac{2002}{2003}\Leftrightarrow x=0\)

a)Ta thấy:

|x|+2003≥2003|x|+2003≥2003

⇒1|x|+2003≤12003⇒1|x|+2003≤12003

⇒2002|x|+2003≤20022003⇒2002|x|+2003≤20022003⇒A≤20022003⇒A≤20022003

Dấu = khi x=0

Vậy MaxA=20022003⇔x=0

15 tháng 9 2019

Bài 1:

\(A=124-5\left|x-7\right|\Leftrightarrow-5\left|x-7\right|+124\)

+Có: \(-5\left|x-7\right|\le0với\forall x\\ \Rightarrow-5\left|x-7\right|+124\le124\\ \Leftrightarrow A\le124\)

+Dấu "=" xảy ra khi \(\left|x-7\right|=0\Leftrightarrow x=7\)

+Vậy \(B_{min}=124\) khi \(x=7\)

15 tháng 9 2019

Còn bài 2 nữa bn

9 tháng 6 2018

1) Áp dụng BĐT \(\frac{a}{b}>\frac{a-m}{b-m}\) với \(\frac{a}{b}< 1\) .Dễ dàng chứng minh Bđt trên, áp dụng vào ta có: 

a) \(x=\frac{2002}{2003}=\frac{2002-1+1}{2003-1+1}=\frac{2003-1}{2004-1}< \frac{2003}{2004}\)

Với \(\frac{a}{b}=\frac{2003}{2004};\frac{a-m}{b-m}=\frac{2003-1}{2004-1}\)

Từ đó ta có: x < y

b) Vì đây là phân số âm nên bé hơn phân số dương nên ta có BĐT: \(\frac{a}{b}>\frac{c}{d}\Leftrightarrow\frac{-a}{b}< \frac{-c}{d}\) 

Áp dụng vào bài toán trên với \(\frac{a}{b}=\frac{2002}{2003}< 1\)và \(\frac{c}{d}=\frac{2005}{2004}>1\)

Nên \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{-a}{b}>\frac{-c}{d}\)hay x > y

9 tháng 6 2018

Bài 1 :

a, Ta có : \(x=\frac{2002}{2003}=1-\frac{1}{2003}\)

               \(y=\frac{2003}{2004}=1-\frac{1}{2004}\)

Vì \(\frac{1}{2003}>\frac{1}{2004}\)

\(\Rightarrow1-\frac{1}{2003}< 1-\frac{1}{2004}\)

\(\Rightarrow x< y\)

b, Ta thấy cả 2 vế đều có dấu âm nên ta rút gọn dấu âm đi thì được : 

\(x=\frac{2002}{2003}\)                                                                             \(y=\frac{2005}{2004}\)

Lúc này : 

Ta có : \(y=\frac{2005}{2004}>1=\frac{2003}{2003}>\frac{2002}{2003}=x\)

Vì khi so sánh dương sẽ đối ngược với so sánh âm :

\(\Rightarrow\)Khi trả lại dấu âm thì tất nhiên \(x=\frac{-2002}{2003}>y=\frac{2005}{-2004}\)

Vậy \(x>y\)

Bài 2 :

 Ta quy đồng các phân số trên như sau : 

\(\frac{-2}{7}=\frac{-6}{21}\)                                                                                                      \(\frac{-2}{9}=\frac{-6}{27}\)

Gọi các phân số thỏa mãn điều kiện trên là x .

Ta có : \(\frac{-6}{21}< x< \frac{-6}{27}\)

\(\Rightarrow x\in\left\{\frac{-6}{22};\frac{-6}{23};\frac{-6}{24};\frac{-6}{25};\frac{-6}{26}\right\}\)

Ta rút gọn và dấu của các phân số như sau ( nếu không rút gọn được thì cúng đừng chuyển dấu ) : 

\(x\in\left\{\frac{3}{-11};\frac{-6}{23};\frac{3}{-12};\frac{-6}{25};\frac{3}{-13}\right\}\)

Vậy các phân số thỏa mãn đề bài là : \(\frac{3}{-11};\frac{3}{-12};\frac{3}{-13}\).

Ta có: \(\left|x\right|\ge0\) với mọi x \(\Rightarrow\left|x\right|+\dfrac{2002}{2003}\ge\dfrac{2002}{2003}\) hay \(C\ge\dfrac{2002}{2003}\)

Dấu ''='' xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy minC=\(\dfrac{2002}{2003}\) khi x=0