Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5 + \(\frac{15}{4}\)|3x+7| + 3
Vì |3x+7| lớn hơn hoặc bằng 0 Với mọi x
=>|3x+7| + 3 lớn hơn hoặc bằng 0 + 3 Với mọi x
=> \(\frac{15}{4}\)|3x+7| + 3 lớn hơn hoặc bằng 3 Với mọi x
=>5 + \(\frac{15}{4}\)|3x+7| + 3 lớn hơn hoặc bằng 5 + 3 Với mọi x
hay C lớn hơn hoặc bằng 8
Dấu = xảy ra <=> |3x+7| = 0
<=> 3x + 7 = 0
<=> 3x = 0 + 7
<=> 3x = 7
<=> x = 7 : 3
<=> x = \(\frac{7}{3}\)
Vậy biểu thức A đạt GTLN bằng 8 tại x =\(\frac{7}{3}\)
xong rùi đó
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
a, Ta có: \(\left|2,5-x\right|\ge0\Rightarrow\left|2,5-x\right|+5,8\ge5,8\Rightarrow H=\frac{5,8}{\left|2,5-x\right|+5,8}\le\frac{5,8}{5,8}=1\)
Dấu "=" xảy ra <=> 2,5-x=0 <=> x=2,5
Vậy Hmax = 1 khi x = 2,5
b, Ta có: \(\left|3x+5\right|\ge0;\left|4y+5\right|\ge0\Rightarrow\left|3x+5\right|+\left|4y+5\right|\ge0\)
\(\Rightarrow\left|3x+5\right|+\left|4y+5\right|+8\ge8\)
\(\Rightarrow\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{20}{8}=\frac{5}{2}\)
\(\Rightarrow K=\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{5}{2}=\frac{33}{10}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+5=0\\4y+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-5}{4}\end{cases}}}\)
Vậy Kmax = 33/10 khi x = -5/3 và y = -5/4