Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự xét dấu "=" nhé, mình chỉ hướng dẫn cách tách thôi
a) \(A=5x^2-4x+1\)
\(A=5\left(x^2-\frac{4}{5}x+\frac{1}{5}\right)\)
\(A=5\left[x^2-2\cdot x\cdot\frac{2}{5}+\left(\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left[\left(x-\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\forall x\)
b) Tương tự đặt -9 ra ngoài rồi khai triển như câu a)
c) \(F=-2x^2-y^2+2xy+4x-40\)
\(F=-x^2-x^2-y^2+2xy+4x-40\)
\(F=-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-36\)
\(F=-36-\left(x-y\right)^2-\left(x-2\right)^2\)
\(F=-36-\left[\left(x-y\right)^2+\left(x-2\right)^2\right]\le-36\forall x;y\)
4x4 + 81
Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:
4x4 + 81 = 4x4 + 36x2 + 81 – 36x2
= ( 2x2 + 9)2 – (6x)2
= (2x2 + 9 – 6x)(2x2 + 9 + 6x)
4) x8 + x4 + 1
Ta sẽ thêm và bớt x4 sau đó nhóm các hạng tử sử dụng các hằng đẳng thức để phân tích tiếp:
x8 + x4 + 1 = x8 + 2x4 + 1 – x4 = (x4 + 1)2 – x4
= (x4 + 1 – x2)(x4 + 1 + x2)
=(x4 – x2 + 1)(x4 + 2x2 – x2 + 1)
=(x4 – x2 + 1)[(x2 + 1)2 – x2 ]
=( x4 – x2 + 1)(x2 + 1 + x2)(x2 + 1 – x2)
= (x4 – x2 + 1)(2x2 + 1).
\(A=2x-x^2=-\left(x^2-2x\right)=-\left(x^2-2x+1-1\right)\)
\(=-\left[\left(x-1\right)^2-1\right]=-\left(x-1\right)^2+1\le1\)
Vậy \(A_{max}=1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(B=x-x^2=-\left(x^2-x\right)=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy \(B_{max}=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(C=1+7x-x^2=-\left(x^2-7x-1\right)\)
\(=-\left(x^2-7x+\frac{49}{4}-\frac{45}{4}\right)\)
\(=-\left[\left(x-\frac{7}{2}\right)^2-\frac{45}{4}\right]=-\left(x-\frac{7}{2}\right)^2+\frac{45}{4}\le\frac{45}{4}\)
Vậy \(C_{max}=\frac{45}{4}\Leftrightarrow x-\frac{7}{2}=0\Leftrightarrow x=\frac{7}{2}\)
A=-x2+2x-1+1
=-(x2-2x+1)+1
=-(x-1)2+1
vì -(x-1)2 bé hơn hoặc = 0 với mọi x nên -(x-1)2+1 bé hơn hoặc = 1
dấu = xảy ra <=>-(x-1)2=0<=>x=1
vậy GTLN của A=1 khi x= 1
A = x2 + 4x + 7
= ( x2 + 4x + 4 ) + 3
= ( x + 2 )2 + 3
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 3 <=> x = -2
B = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2
2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = -9/2 <=> x = 3/2
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
A = 2.(x^2-4x+4) - 18 = 2.(x-2)^2 - 18 >= -18
Dấu "=" xảy ra <=> x-2 = 0 <=> x=2
Vậy Min A = -18 <=> x=2
a) A = x2 - 6x + 13 = x2 - 2.x.3 + 33 +4 = (x-3)2 + 4 >= 4 suy ra minA=4
mấy câu kia giải tương tự
Lời giải:
a)
Ta có: \(1-x^2+6x=10-(x^2-6x+9)\)
\(=10-(x-3)^2\)
Vì \((x-3)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow 10-(x-3)^2\leq 10-0=10\)
Vậy GTLN của biểu thức là $10$ khi \((x-3)^2=0\Leftrightarrow x=3\)
b) Hoàn toàn tương tự như phần a:
\(11-10x-x^2=36-(x^2+10x+25)\)
\(=36-(x+5)^2\leq 36-0=36\)
Vậy GTLN của biểu thức la $36$ khi $x=-5$
c) \(19-9x^2+6x=20-(9x^2-6x+1)\)
\(=20-(3x-1)^2\leq 20-0=20\)
Vậy GTLN của biểu thức là $20$ khi $3x-1=0$ hay \(x=\frac{1}{3}\)
TL:
a,\(-\left(x^2-2x+1\right)+1\)1
\(-\left(x-1\right)^2+1\) \(\le\) 1
=>giá trị lớn nhất của biểu thức là 1
vậy........
b,\(-\left(9x^2+6x+1\right)+20\)
\(-\left(3x+1\right)^2+20\)
\(\le20\)
=>giá trị lớn nhất cuar biểu thức là 20
vậy.........
hc tốt
Dấu của hạng tử bậc là dấu âm nên chỉ tìm được giá trị lớn nhất thôi nhé.
a) A=2x−x2A=2x−x2+1−1A=1−(x2−2x+1)A=1−(x−1)2Do (x−1)2≥0∀x⇒A=1−(x−1)2≤1∀x Dấu “=” xảy ra khi: (x−1)2=0⇔x−1=0⇔x=1Vậy MaxA=1 khi x=1
b) B=19−6x−9x2B=20−1−6x−9x2B=20−(1+6x+9x2)B=20−(1+3x)2Do (1+3x)2≥0∀x⇒B=20−(1+3x)2≤20∀xDấu "=" xảy ra khi:(1+3x)2=0⇔1+3x=0⇔3x=−1⇔x=−13Vậy MaxB=20 khi x=−13