K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

Để \(\frac{1}{\left(x-2\right)^2+8}\) đạt giá trị lớn nhất

mà (x-2)^2 + 8 >= 0; 8 > 0 => (x-2)^2 + 8 >0

=> (x - 2 ) ^2 + 8 = 8

(x-2) ^2                 = 0

x -2                     = 0

x                         = 2

KL:x = 2 để 1/(x-2)^2+ 8 đạt giá trị lớn nhất ( giá trị lớn nhất của 1/(x-2)^2+8 = 1/8 )

8 tháng 7 2018

1,\(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge0+9=9\)

Nên GTNN của \(A\) là \(9\) đạt được khi \(x-0,4=0\Rightarrow x=0,4\)

2,\(\left|x+3\right|\ge0\Rightarrow-\left|x+3\right|\le0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}-0=\frac{1}{8}\)

Nên GTLN của \(B\) là \(\frac{1}{8}\) đạt được khi \(x+3=0\Rightarrow x=-3\)

8 tháng 7 2018

1.

\(A=\left|x-0,4\right|+9\)

Vì \(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge9\)

Vậy GTNN của A là 9 khi x = 0,4

2.

\(B=\frac{1}{8}-\left|x+3\right|\)

Vì \(\left|x+3\right|\ge0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\)

Vậy GTLN của B là \(\frac{1}{8}\)khi x = -3

31 tháng 3 2019

a) Ta có : \(|x-7|\ge0\)

\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)

Mà \(A=0\)

\(\Leftrightarrow5|x-7|=0\)

\(\Leftrightarrow x=7\left(2\right)\)

Từ (1) và (2) => max A = 124

b) 

+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)

\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)

Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )

Còn lại bạn tự làm nha .

Cuối cùng ra \(_{max}B=\frac{7}{6}\)

11 tháng 2 2017

1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)

Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ........

2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = 2

Vậy ..........

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

\(C=1+\frac{6}{x^2+2}\)

\(\Rightarrow\frac{6}{x^2+2}\)phải lớn nhất hay \(x^2+2\)nhỏ nhất

Mà \(x^2+2\ge2\)\(\Leftrightarrow\frac{x^2+8}{x^2+2}\ge4\)

Mà MaxC=4 khi và chỉ khi x=0

Vậy MaxC=4 khi x=0

Tìm giá trị lớn nhất của biểu thức:

C = \(\frac{x^2+8}{x^2+2}\)

GTLN = 4 

vì x = 0 

nha bạn chúc bạn học tốt nha 

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)