K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

a

Đặt \(x^2+x=a\)

Ta có:\(a^2-2a-15=\left(a^2-2a+1\right)-16=\left(a-1\right)^2-4^2=\left(a-5\right)\left(a+3\right)\)

Thay \(a=x^2+x\) vào ta được \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15=\left(x^2+x-5\right)\left(x^2+x+3\right)\)

b

\(A=-x^2+2xy-4y^2+2x+10y-8\)

\(-A=x^2-2xy+4y^2-2x-10y+8\)

\(-A=\left(x^2-2xy+y^2\right)-\left(2x+10y\right)+3y^2+8\)

\(-A=\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y^2-4y+4\right)+3\)

\(-A=\left(x-y-1\right)^2-3\left(y-2\right)^2+3\ge3\) hay \(A\le3\)

Dấu "=" xảy ra tại \(x=3;y=2\)

P/S:ko chắc

27 tháng 9 2019

Câu đầu em làm đúng.

Câu thứ 2 em xem lại nha! Chú ý là  khi kết luận: \(A^2-B^2+a\ge a\) là sai nhé. Phải đưa về dạng \(A^2+B^2+a\ge a\)

\(A=-x^2+2xy-4y^2+2x+10y-8\)

\(\Rightarrow-A=x^2-2xy+4y^2-2x-10y+8\)

\(=\left(x^2-2xy+y^2\right)+3y^2-2x+2y-12y+8\)

\(=\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y^2-4y+4\right)-5\)

\(=\left(x-y-1\right)^2+3\left(y-2\right)^2-5\ge-5\)

\(\Rightarrow A\le5\)

"=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy max A = 5 tại x = 3 và y = 2.

12 tháng 7 2016

B= \(\frac{7}{4}\)

C= \(\frac{1}{2}\)

13 tháng 7 2016

bạn có thể nói rõ cách làm không

20 tháng 8 2017

1) \(a^2+\frac{1}{a^2}=14\Leftrightarrow a^2+\frac{1}{a^2}+2a.\frac{1}{a}=16\Leftrightarrow\left(a+\frac{1}{a}\right)^2=16\Rightarrow a+\frac{1}{a}=4\)

\(\Rightarrow\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=a^3+\frac{1}{a}+a+\frac{1}{a^3}=a^3+4+\frac{1}{a^3}=4.14=56\)

\(\Rightarrow a^3+\frac{1}{a^3}=52\)

Ta có : \(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=a^5+\frac{1}{a}+a+\frac{1}{a^5}=a^5+4+\frac{1}{a^5}=14.52\)

\(\Rightarrow a^5+\frac{1}{a^5}=14.52-4=724\)

2) \(A=2xy-x^2-4y^2+2x+10y-2000\)

\(=\left(-x^2+2xy-y^2\right)+\left(2x-2y\right)+\left(-3y^2+12y-12\right)-1988\)

\(=-\left(x-y\right)^2+2\left(x-y\right)-1-3\left(y^2-4y+4\right)-1987\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2-1987\le-1987\forall x;y\) có GTLN là 2013

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy \(A_{max}=-1987\) tại \(x=3;y=2\)

20 tháng 10 2021

\(A=-2x^2-10y^2+4xy+4x+4y+2016\)

\(=-2.\left(x^2+5y^2-4xy-4x-4y\right)+2016\)

\(=-2.\left(x^2+4y^2+4-4xy-4x+8y+y^2-12y+36\right)+2.36+2016\)

\(=-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\)

Ta có: \(\left(x-2y-2\right)^2+\left(y-6\right)^2\ge0\)

\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]\le0\)

\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\le2088\)

\(\Rightarrow A\le2088\)

Vậy giá trị lớn nhất của \(A=2088\) khi: \(\hept{\begin{cases}x-2y-2=0\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2y+2\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=6\end{cases}}\)

23 tháng 10 2022

sao lại có thêm + 4 vào mà ko có thêm -4 vào ?

 

21 tháng 11 2018

\(6M=-6x^2+12xy-24y^2+12x+60y-48\)

\(=(-4x^2+12xy+9y^2)+(-2x^2+12x)+(-15y^2+60y)-48\)

\(=-(2x-3y)^2-2(x^2-6x+9)-15(y^2-4y+4)+30\)

\(=-(2x-3y)^2-2(x-3)^2-15(y-2)^2+30\le30\)

Dấu " = " xảy ra khi : 2x - 3y = 0 ; x - 3 = 0 , y - 2 = 0 => \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy GTLN của M là \(\frac{30}{8}=5\)tại x = 3 , y = 2

Chúc bạn học tốt :>

30 tháng 10 2021

\(A=-2x^2+4xy-2y^2+4\left(x-y\right)-2-8y^2+8y+2019\\ A=\left[-2\left(x-y\right)^2+4\left(x-y\right)-2\right]-8\left(y^2-y+\dfrac{1}{4}\right)+2020\\ A=-2\left(x-y-1\right)^2-8\left(y-\dfrac{1}{2}\right)^2+2020\le2020\\ A_{max}=2020\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1+\dfrac{1}{2}=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

30 tháng 10 2021

Cịu truyền nghề cho cháu với ạ!

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=10-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)\)

\(=10-\left(x-y-1\right)^2-3\left(y-2\right)^2\le10\)

Vậy \(MaxA=10\), đạt được khi và chỉ khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)