Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Bu-nhia-cốp-xki ta được:
\(\left(x-2+4-x\right)\left(1+9\right)\ge\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\).
\(\Leftrightarrow20\ge P^2\Leftrightarrow-\sqrt{20}\le P\le\sqrt{20}.\)
Dấu bằng bạn tự tìm dấu bằng xảy ra của BĐT Bunhiacopxki nha, trên mạng có nhiều.
Toán này lớp 8 đúng không ta
\(\sqrt{-x^2+2x+2}=\sqrt{3-\left(x^2-2x+1\right)}\)
= \(\sqrt{3-\left(x-1\right)^2}\le\sqrt{3}\)
Đạt được khi x = 1
Câu còn lại làm tương tự
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
một hình chữ nhật có chiều rộng là 1/3 mét, chiều dài gấp 5 lần chiều rộng. Tính chu vi và diện tích hình chữ nhật đó.
\(\frac{x^2-\sqrt{2}}{x^4+x^2\sqrt{3}-x^2\sqrt{2}-\sqrt{6}}\)
\(=\frac{x^2-\sqrt{2}}{x^2\left(x^2-\sqrt{2}\right)+\sqrt{3}\left(x^2-\sqrt{2}\right)}\)
\(=\frac{x^2-\sqrt{2}}{\left(x^2-\sqrt{2}\right)\left(x^2+\sqrt{3}\right)}\)
\(=\frac{1}{x^2+\sqrt{3}}\)
Vì \(x^2+\sqrt{3}\ge\sqrt{3}\)với \(\forall x\)\(\Rightarrow\frac{1}{x^2+\sqrt{3}}\le\frac{1}{\sqrt{3}}\)\(\Leftrightarrow x=0\)
\(\Rightarrow\)Giá trị lớn nhất của biểu thức là \(\frac{1}{\sqrt{3}}\Leftrightarrow x=0\)
a)\(ĐKXĐ\Leftrightarrow\begin{cases}\sqrt{x}\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(A=\frac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)+1\cdot\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
b)\(S=A\cdot B\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}\)
\(=1+\frac{1}{\sqrt{x}+2}\)
Để S đạt GTLN thì \(\frac{1}{\sqrt{x}+2}\) đạt GTLN
\(\frac{1}{\sqrt{x}+2}\) đạt GTLN \(\Leftrightarrow\sqrt{x}+2\) đạt GTNN
GTNN \(\sqrt{x}+2\) là 2 \(\Leftrightarrow x=0\)
Vậy GTLN của S là \(\frac{3}{2}\Leftrightarrow x=0\)
a/ \(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) \(\left(ĐK:x\ge0;x\ne1\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
câu a
x phải dương và x khác 4
câu b
x = 9 P = 4
x = 4 P không xác định vì mẫu số= 0
Câu c
P ≤ 0 thì | P| > P
hết giờ rôi bạn hiền
đk: \(-2\le x\le4\)
Ta có \(P^2=\left(\sqrt{x+2}+\sqrt{4-x}\right)^2\)
\(\le2\left[\left(\sqrt{x+2}\right)^2+\left(\sqrt{4-x}\right)^2\right]\) (dùng BĐT \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))
\(=2\left(x+2+4-x\right)\)
\(=12\)
\(\Rightarrow P\le2\sqrt{3}\) (vì \(P>0\))
Dấu "=" xảy ra \(\Leftrightarrow x+2=4-x\Leftrightarrow x=1\)
Vậy GTLN của P là \(2\sqrt{3}\) khi \(x=1\)
Ta có: \(P=\sqrt{x+2}+\sqrt{4-x}\left(-2\le x\le4\right)\)
\(\Leftrightarrow P^2=\left(\sqrt{x+2}+\sqrt{4-x}\right)^2\)
\(\Leftrightarrow P^2=x+2+4-x+2\sqrt{\left(x+2\right)\left(4-x\right)}\)
\(\Leftrightarrow P^2=6+2\sqrt{\left(x+2\right)\left(4-x\right)}\)
Mà: \(6+2\sqrt{\left(x+2\right)\left(4-x\right)}\le6+x+2+4-x=12\)
\(\Leftrightarrow P^2\le12\)
\(\Leftrightarrow P\le2\sqrt{3}\)
Dấu "=" xảy ra khi: \(x+2=4-x\Leftrightarrow2x=2\Leftrightarrow x=1\)
Vậy: \(P_{max}=2\sqrt{3}\Leftrightarrow x=1\)