Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)
\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)
Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)
\(\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)
\(\Rightarrow2012\le x+y+2016\le2014\)
Vậy ta có :
+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)
+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
cho x y thỏa mãn \(x^2+2xy+6x+6y+2y^2+8=0\)
tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+2016
A=\(\left(x-y\right)^2-2.6.\left(x-y\right)+36+5y^2+10y+5+4\)
=\(\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Dấu bằng xảy ra khi y=1 và x=5
2B=\(2x^2+2y^2-2xy-2x+2y+2\)
=\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
=>B\(\ge\)0
\(x^2+y^2+9+2xy+6x+6y+y^2-1=0\)
\(\Leftrightarrow\left(x+y+3\right)^2+y^2-1=0\Leftrightarrow\left(x+y+3\right)^2=1-y^2\le1\)
\(\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow-1+2013\le x+y+2016\le1+2013\)
\(\Rightarrow2012\le B\le2014\)
\(\Rightarrow B_{min}=2012\) khi \(\left\{{}\begin{matrix}1-y^2=1\\x+y+3=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=0\\x=-4\end{matrix}\right.\)
\(B_{max}=2014\) khi \(\left\{{}\begin{matrix}1-y^2=1\\x+y+3=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=0\\x=-2\end{matrix}\right.\)
Bài làm:
a) Sửa đề:
\(A=4x-x^2=-\left(x^2-4x+4\right)+4\)
\(=-\left(x-2\right)^2+4\le4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(A_{Max}=4\Leftrightarrow x=2\)
b) \(B=-x^2-4x+5=-\left(x^2+4x+4\right)+9\)
\(=-\left(x+2\right)^2+9\le9\)
Dấu "=" xảy ra khi: \(-\left(x+2\right)^2=0\Rightarrow x=-2\)
Vậy \(B_{Max}=9\Leftrightarrow x=-2\)
c) \(C=-x^2-2y^2-2xy+2y\)
\(C=-\left(x^2+2xy+y^2\right)-\left(y^2-2y+1\right)+1\)
\(C=-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+y\right)^2=0\\-\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy \(C_{Max}=1\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
a) Sửa : A = 4x - x2
A = -x2 + 4x - 4 + 4
A = -( x2 - 4x + 4 ) + 4
A = -( x - 2 )2 + 4
-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 ) + 4 ≤ 4
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMax = 4 , đạt được khi x = 2
b) B = -x2 - 4x + 5 = -x2 - 4x - 4 + 9 = -( x2 + 4x + 4 ) + 9 = -( x + 2 )2 + 9
-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 9 ≤ 9
Dấu " = " xảy ra <=> x + 2 = 0 => x = -2
Vậy BMax = 9, đạt được khi x = -2
c) C = -x2 - 2y2 - 2xy + 2y
= ( -x2 - 2xy - y2 ) + ( -y2 + 2y -1 ) + 1
= -( x2 + 2xy + y2 ) - ( y2 - 2y + 1 ) + 1
= -( x + y )2 - ( y - 1 )2 + 1
\(\hept{\begin{cases}-\left(x+y\right)^2\le0\\-\left(y-1\right)^2\le0\end{cases}\Rightarrow}-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\forall x,y\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy CMax = 1 , đạt được khi x = -1 ; y = 1
ta có:
A=x^2-2xy+6y^2-12x+2y+54
=(x^2-2xy+y^2)-12x+12y+36+5y^2-10y+18
=(x-y)^2-(12x-12y)+6^2+5y^2-10y+5+13
=(x-y)^2-2*6*(x-y)+6^2+5(y^2-2y+1)+13
=(x-y-6)^2+5(y-1)^2+13
Vì (x-y-6)^2 \(\ge\)0 với \(\forall\)x,y
5(y-1)^2\(\ge\)0 với \(\forall\)y
=> A=(x-y-6)^2+5(y-1)^2+13\(\ge\)13với \(\forall\)x,y
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y-6=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=7\\y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Vậy Gía trị nhỏ nhất của A là 13 khi x=7,y=1
nHỚ TICK
<=> x^2 + 2x(y+2) + y^2+4y+4+y^2+2y+1-4
<=> x^2 + 2x(y+2) + (y+2)^2 + (y+1)^2 - 4
<=> (x+y+2)^2 + (y+1)^2 - 4 >= -4
min = -4 khi y = -1 , x = -1
\(=\left(x+y+2\right)^2+\left(y+1\right)^2-4\)
Vì \(\left(x+y+2\right)^2\ge0\forall x\) , \(\left(y+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+y+2\right)^2+\left(y+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+y+2\right)^2+\left(y+1\right)^2-4\ge-4\forall x\)
Vậy GTNN của A=-4 Dấu bằng xảy ra khi
\(\Rightarrow\hept{\begin{cases}\left(x+y+2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2-y\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}\)
Vậy GTNN của A=-4 khi và chỉ khi x=-3 , y=-1
Bạn coi lại đề bài, sao có cả \(-2y^2\) và \(6y^2\) thế kia? Ko ai cho đề như vậy cả
À nhầm bạn ạ, 6y thôi @@