Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,C=-Ix-2I\)
\(\Rightarrow C\le0\forall x\)
Dấu ''='' xảy ra <=> x - 2 = 0 <=> x = 2
Vậy giá trị lớn nhất của x là 0 khi x = 2
\(b,D=1-I2x-3I\)
\(\Rightarrow D\le1\forall x\)
Dấu ''='' xảy ra <=> 2x - 3 = 0<=> x=\(\frac{3}{2}\)
Vậy giá trị nhỏ nhất của D là 1 khi x =\(\frac{3}{2}\)
Gía trị tuyệt đối thì luôn lớn hơn hoặc bằng 0 nên C ms bé hơn hoặc=0; D ms bé hơn hoặc = 1 nha bạn
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
a) \(\begin{cases}\left(x+2\right)^2\ge0\\\left(y-\frac{1}{5}\right)^2\ge0\end{cases}\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10=-10\)hay \(C\ge-10\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Vậy GTNN C là -10 khi \(\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}.}\)
b)\(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0+5=5\)
\(\Rightarrow\frac{4}{\left(2x-3\right)^2-5}\le\frac{4}{5}\Leftrightarrow D\le\frac{4}{5}\)
Dấu "=" xảy ra khi:
\(\left(2x-3\right)^2=0\Rightarrow2x-3=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)
Vậy GTLN D là \(\frac{4}{5}\)khi \(x=\frac{3}{2}.\)
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
\(a)A=2+|x+3|\)
Vì \(|x+3|\ge0\)\(\forall x\)
\(\Rightarrow2+|x+3|\ge2\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_A=2\Leftrightarrow x=-3\)
\(b)B=\frac{3}{2}+|2x-1|\)
Vì \(|2x-1|\ge0\)\(\forall x\)
\(\Rightarrow\frac{3}{2}+|2x-1|\ge\frac{3}{2}\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_B=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)
Cái đề là vầy hả bạn
D= \(\frac{5}{(2x-1)^2+3}\)
Bạn sớm trả lời để mình làm nah
GTLN cua D la khi (2x-1)^2>=0
dau = xay ra khi 2x-1=0=>x=1/2
=>D=5/0+3=5/3
vay D=5/3
nho k ung ho minh nhe