Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A có nghĩa :
\(\Rightarrow\sqrt{2x+3-x^2\: }\Leftrightarrow2+\sqrt{2x+3-x^2}\ge2\forall x\)
\(\Rightarrow\sqrt{-\left(x-1\right)^2+4}\ge0\)
\(\Leftrightarrow-\left(x-1\right)^2\ge-4\)
\(\Leftrightarrow\left(x-1\right)^2\le4\)
\(\Rightarrow3\ge x\ge-1\)
Vậy.....
Ta có
\(A=2x+\sqrt{4-2x^2}=\sqrt{\left(\sqrt{2}.\sqrt{2}x+1.\sqrt{4-2x^2}\right)^2}\)
\(\le\sqrt{\left(2+1\right)\left(2x^2+4-2x^2\right)}=\sqrt{3.4}=2\sqrt{3}\)
Vậy GTLN là \(2\sqrt{3}\)đạt được khi \(\frac{2}{\sqrt{3}}\)
a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)
\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)
Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)
hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)
A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)
+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
Vậy \(x\ge1\)thì A = B
d) \(x\le\frac{1}{2}\)
\(A=\sqrt{3-2x^2+2x}=\sqrt{-2\left(x^2-x+\frac{1}{4}\right)+\frac{7}{2}}=\sqrt{-2\left(x-\frac{1}{2}\right)^2+\frac{7}{2}}\le\sqrt{\frac{7}{2}}\)
Vậy maxA = \(\frac{\sqrt{14}}{2}\)đạt được khi \(x=\frac{1}{2}\)