Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=2017-2x^2+4x-8y^2-8y\\ P=-2\left(x^2-2x+1\right)-2\left(4y^2+4y+1\right)+2021\\ P=-2\left(x-1\right)^2-2\left(2y+1\right)^2+2021\le2021\\ P_{max}=2021\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
a: \(A=4x^2-4x+1-4=\left(2x-1\right)^2-4>=-4\forall x\)
Dấu '=' xảy ra khi x=1/2
2.) A=x2-6x+15=(x-3)2+6
Vì (x-3)2>=0 với mọi x
=> (x-s)2+6>=6 với mọi x
hay A>=6 với mọi x
Dấu = xảy ra <=> x-3=0 <=> x=3
Vậy....
B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10
vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y
6>0
=> (x-2)2+(2y+1)2 + 6>=6 với mọi x;y
hay B>=6 với mọi x;y
Dấu = xảy ra <=> x-2=0 và 2y+1=0
<=> x=2 và y=-1/2
Vậy....
3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7
vì -(x-2)2<=0 với mọi x
=> -(x-2)2+7<=7 với mọi x
hay A<=7 với mọi x
Dấu = xảy ra <=> x-2=0 <=> x=2
Vậy....
B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7
vì -(x-1)2<=0 với mọi x
-(3y+1)2<=0 với mọi y
suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y
=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y
hay A<=7 với mọi x, y
Dấu = xảy ra <=> x-1=0 và 3y+1=0
<=> x=1 và y=-1/3
vậy...
\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)
\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
Biểu thức A bạn viết đúng chưa?
a/ A = 3x2 + 6x - 2 => 3A = 9x2 + 18x - 6 = (3x)2 + 2 . 3 . 3x + 32 - 15 = (3x + 3)2 - 15 \(\ge\)-15 => A\(\ge\)5
Đẳng thức xảy ra khi: (3x + 3)2 = 0 => x = -1
Vậy giá trị nhỏ nhất của A là -5 khi x = -1.
b/ B = (x + 1)(2x - 3) + 1 = 2x2 - 3x + 2x - 3 + 1 = 2x2 - x - 2
=> 2B = 4x2 - 2x - 4 = (2x)2 - 2 . 0,5 . 2x + 0,52 - 4,25 = (2x - 0,5)2 - 4,25 \(\ge\)-4,25 => B \(\ge\)-2,125
Đẳng thức xảy ra khi: (2x - 0,5)2 = 0 => x = 0,25
Vậy giá trị nhỏ nhất của B là -2,125 khi x = 0,25.
c/ C = x2 + y2 + 4x - 2y + 1 = x2 + y2 + 4x - 2y + 1 + 22 - 22 = (x2 + 4x + 22) + (y2 - 2y + 1) - 4 = (x + 2)2 + (y - 1)2 - 4 \(\ge\)-4
Đẳng thức xảy ra khi: (x + 2)2 = 0 và (y - 1)2 = 0 => x = -2 và y = 1
Vậy giá trị nhỏ nhất của C là -4 khi x = -2 và y = 1
mk làm giúp bn;
A = 3(x+1)2 -3 -2 => GTNN A = -5
B = 2x2 - x -2 = 2(x - 1/2)2 -1/2 -2 => GTNN B = -5/2
( tisk thì làm tip, k thi nghỉ khỏe)
\(-4x^2+4x+2013=-\left(4x^2-4x+1\right)+2014=-\left(2x-1\right)^2+2014\le2014\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)