Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=-x^2+2x=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\)
\(maxA=1\Leftrightarrow x=1\)
b) \(B=\left(2-3x\right)\left(3+2x\right)=-6x^2-5x+6=-6\left(x^2+\dfrac{5}{6}x+\dfrac{25}{144}\right)+\dfrac{169}{24}=-6\left(x+\dfrac{5}{12}\right)^2+\dfrac{169}{24}\le\dfrac{169}{24}\)
\(minB=\dfrac{169}{24}\Leftrightarrow x=-\dfrac{5}{12}\)
c) \(C=4xy-4x-2y-4x^2-2y^2-3=-\left[4x^2-4x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-4y+4\right)-6=\left(2x-y+1\right)^2+\left(y-2\right)^2-6\le-6\)
\(minC=-6\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=2\end{matrix}\right.\)
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(A=-\left(4x^2-4xy+y^2\right)-\left(y^2-2y+1\right)+4\)
\(A=4-\left(2x-y\right)^2-\left(y-1\right)^2\le4\)
\(A_{max}=4\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=1\end{matrix}\right.\)
A=−x2−12x+3=−(x2+12x+36)+39=−(x+6)2+39≤39
Vậy GTLN của A là 39 khi x = -6
B=7−4x2+4x=−(4x2−4x+1)+8=−(2x−1)2+8≤8
Vậy GTLN của B là 8 khi x =
~Hok tốt~
Bài làm:
a) Sửa đề:
\(A=4x-x^2=-\left(x^2-4x+4\right)+4\)
\(=-\left(x-2\right)^2+4\le4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(A_{Max}=4\Leftrightarrow x=2\)
b) \(B=-x^2-4x+5=-\left(x^2+4x+4\right)+9\)
\(=-\left(x+2\right)^2+9\le9\)
Dấu "=" xảy ra khi: \(-\left(x+2\right)^2=0\Rightarrow x=-2\)
Vậy \(B_{Max}=9\Leftrightarrow x=-2\)
c) \(C=-x^2-2y^2-2xy+2y\)
\(C=-\left(x^2+2xy+y^2\right)-\left(y^2-2y+1\right)+1\)
\(C=-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+y\right)^2=0\\-\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy \(C_{Max}=1\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
a) Sửa : A = 4x - x2
A = -x2 + 4x - 4 + 4
A = -( x2 - 4x + 4 ) + 4
A = -( x - 2 )2 + 4
-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 ) + 4 ≤ 4
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMax = 4 , đạt được khi x = 2
b) B = -x2 - 4x + 5 = -x2 - 4x - 4 + 9 = -( x2 + 4x + 4 ) + 9 = -( x + 2 )2 + 9
-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 9 ≤ 9
Dấu " = " xảy ra <=> x + 2 = 0 => x = -2
Vậy BMax = 9, đạt được khi x = -2
c) C = -x2 - 2y2 - 2xy + 2y
= ( -x2 - 2xy - y2 ) + ( -y2 + 2y -1 ) + 1
= -( x2 + 2xy + y2 ) - ( y2 - 2y + 1 ) + 1
= -( x + y )2 - ( y - 1 )2 + 1
\(\hept{\begin{cases}-\left(x+y\right)^2\le0\\-\left(y-1\right)^2\le0\end{cases}\Rightarrow}-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\forall x,y\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy CMax = 1 , đạt được khi x = -1 ; y = 1
\(A=13x^2+y^2+4xy-2y-16x+2015\)
\(A=\left(4x^2-4x+1\right)+2y\left(2x-1\right)+y^2+\left(9x^2-12x+4\right)+2010\)
\(A=\left(2x-1\right)^2+2y\left(2x-1\right)+y^2+\left(3x-2\right)^2+2010\)
\(A=\left(2x-1+y\right)^2+\left(3x-2\right)^2+2010\)
Đến đây bạn tự làm nốt nhé~
không làm được thì ib
tìm giá trị nhỏ nhất của biểu thức
A=3x2-4xy+2y2-3x+2014
giúp mik nha mik cần gấp lắm sáng mai lộp rồi
Đặt \(A=3x^2-4xy+2y^2-3x+2007\)
\(A=2x^2-4xy+2y^2+x^2-3x+2007\)
\(A=2\left(x-y\right)^2+x^2-2.\frac{3}{2}+\frac{9}{4}+\frac{8019}{4}\)
\(A=2\left(x-y\right)^2+\left(x-\frac{3}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)
Dấu = xảy ra khi \(\hept{\begin{cases}x-y=0\\x-\frac{3}{2}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\x=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy Min A = \(\frac{8019}{4}\) khi \(x=y=\frac{3}{2}\)
\(A=-\left(4x^2-4xy+y^2\right)-\left(y^2-2y+1\right)+4\)
\(A=-\left(2x-y\right)^2-\left(y-1\right)^2+4\)
Do \(\left\{{}\begin{matrix}-\left(2x-y\right)^2\le0\\-\left(y-1\right)^2\le0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow A\le4;\forall x;y\)
Vậy \(A_{max}=4\) khi \(x=\dfrac{1}{2};y=1\)