Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x\right)=\frac{x}{\left(x+1999\right)^2}max\)
<=> (x + 1999)2 min
Mà (x + 1999)2 > 0 nên (x + 1999)2 min = 0 <=> x = -1999
Vậy GTLN của A(x) là 0 <=> x = -1999
Cách trình bày của ĐTV sai trầm trọng, lp 8 ko thể trình bày như thế
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)
\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)
\(N=\frac{-x^3-2x^2-2x}{x}\)
\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)
\(N=-\left(x^2+2x+2\right)\)
b) \(N=-\left(x^2+2x+2\right)\)
\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)
\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)
Max N = -1 \(\Leftrightarrow x=-1\)
Vậy .......................
bài này ta có thể giải theo 2 cách
ta có A = \(\frac{x^2-2x+2011}{x^2}\)
= \(\frac{x^2}{x^2}\)- \(\frac{2x}{x^2}\)+ \(\frac{2011}{x^2}\)
= 1 - \(\frac{2}{x}\)+ \(\frac{2011}{x^2}\)
đặt \(\frac{1}{x}\)= y ta có
A= 1- 2y + 2011y^2
cách 1 :
A = 2011y^2 - 2y + 1
= 2011 ( y^2 - \(\frac{2}{2011}y\)+ \(\frac{1}{2011}\))
= 2011( y^2 - 2.y.\(\frac{1}{2011}\)+ \(\frac{1}{2011^2}\)- \(\frac{1}{2011^2}\) + \(\frac{1}{2011}\))
= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
= 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)
vì ( y - \(\frac{1}{2011}\)) 2>=0
=> 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)
hay A >=\(\frac{2010}{2011}\)
cách 2
A = 2011y^2 - 2y + 1
= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\). \(\frac{1}{\sqrt{2011}}\)+ \(\frac{1}{2011}\)+ \(\frac{2010}{2011}\)
= \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)
vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0
nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)
hay A >= \(\frac{2010}{2011}\)
a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)
b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì
\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)
d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của B là - 1 khi x = -1
Ta có : \(f\left(x\right)=x^2+6x+15=\left(x+3\right)^2+6\ge6\)
Vậy Min = 6 <=> x = - 3
Nhận thấy , giá trị của x càng tăng thì giá trị của f(x) cũng tăng theo
Vậy f(x) không có giá trị lớn nhất .
Có: \(f\left(x\right)=x^2+6x+15=x^2+2.3x+3^2+6=\left(x+3\right)^2+6\)
Có: \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+3\right)^2+6\ge6\forall x\)
\(\Rightarrow\)GTNN của f(x) là 6 khi: ( x+3 )2 = 0
x+3 = 0
x=-3
Vậy GTNN của f(x) là 6 khi x=-3
Chúc bạn học tốt!
Biến đổi A(x):
\(A\left(x\right)=\frac{x+1999-1999}{\left(x+1999\right)^2}=\frac{x+1999}{\left(x+1999\right)^2}-\frac{1999}{\left(x+1999\right)^2}=\frac{1}{x+1999}-\frac{1999}{\left(x+1999\right)^2}\)
\(=\frac{1}{x+1999}-1999.\frac{1}{\left(x+1999\right)^2}=\frac{1}{x+1999}-1999.\left(\frac{1}{x+1999}\right)^2\)
Đặt \(\frac{1}{x+1999}=t\left(1\right)\)
PT \(\Leftrightarrow t-1999t^2=-1999t^2+t=-\left(1999t^2-t\right)=-\left[1999.\left(t^2-\frac{1}{1999}.t\right)\right]\)
\(=-\left[1999.\left(t^2-2.t.\frac{1}{3998}+\left(\frac{1}{3998}\right)^2-\left(\frac{1}{3998}\right)^2\right)\right]=....\) (tự biến đổi)
\(=-1999\left(t-\frac{1}{3998}\right)^2+\frac{1}{7996}=\frac{1}{7996}-1999\left(t-\frac{1}{3998}\right)^2\le\frac{1}{7996}\)
=>GTLN của \(t-1999t^2=\frac{1}{7996}\)
Dấu "=" xảy ra <=> \(t=\frac{1}{3998}\)
Thay t vào (1) ta đc: \(\frac{1}{x+1999}=\frac{1}{3998}\Rightarrow x=1999\)
Vậy..................