K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2020

\(3x^2-2\left(m+5\right)x-m^2+2m+8\le0\)

Nếu \(m>-\frac{1}{2}\)

\(pt\Leftrightarrow\frac{-m+4}{3}\le x\le m+2\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}\frac{-m+4}{3}\le-1\\m+2\ge1\end{matrix}\right.\Rightarrow m\ge7\)

Nếu \(m< -\frac{1}{2}\)

\(pt\Leftrightarrow m+2\le x\le\frac{-m+4}{3}\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}\frac{-m+4}{3}\ge1\\m+2\le-1\end{matrix}\right.\Rightarrow m\le-3\)

Nếu \(m=-\frac{1}{2}\Rightarrow x=\frac{3}{2}\)

Vậy \(m\le-3;m\ge7\)

15 tháng 3 2020

Vế phải của phương trình (2) đâu bạn??

15 tháng 3 2020

VP = 0 ạ

30 tháng 1 2016

\(\int_{\Delta'=\left(m+1\right)^2-3\left(m-1\right)\left(m-2\right)<0}^{m-1>0}\)\(\int\limits^{m>1}_{-2m^2-7m+-5<0}\)=>\(\int_{m<-1;m>\frac{5}{2}}^{m>1}\)=> m > 5/2

29 tháng 3 2020

sao mik chon được m>5/2 vậy

9 tháng 2 2019

bạn thêm đấu bằng vào kết quả hộ mình nhé. sửa lại \(2\le m\le4\)

9 tháng 2 2019

bài 1: bạn chỉ cần giải đen ta làm sao cho nó >=0 .Mình l;àm mẫu câu a nhé:

a) để phương trình có 2 no phân biệt thì \(\Delta\)>=0

\(\Leftrightarrow\left(2m-5\right)^2-\left(m-3\right)\left(5m-11\right)\) >=0

\(\Leftrightarrow-m^{^{ }2}+6m-8\ge0\)

\(\Leftrightarrow2< m< 4\)

vậy 2<m<4 thỏa mãn đề bài