K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: \(\Leftrightarrow\left(x^2-3x+2\right)\left(x^2-3x+3\right)=0\)

=>x^2-3x+2=0

=>x=2 hoặc x=1

b: \(\Leftrightarrow\left(\left|x\right|\right)^2-\left|x\right|+m=0\)

Để phương trình có nghiệm thì \(\text{Δ}>=0\)

=>1-4m>=0

=>m<=1/4

Để phương trình vô nghiệm thì Δ<0

=>m>1/4

c: TH1: m=1

=>-2x+2=0

=>x=1

TH2: m<>1

\(\text{Δ}=\left(-2\right)^2-4\left(1-m\right)\cdot2m\)

\(=4+8m\left(m-1\right)\)

\(=8m^2-8m+4\)

Để phương trình có nghiệm thì Δ>=0

=>\(m\in R\)

 

14 tháng 10 2018

Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3

25 tháng 3 2018

\(x^2-2\left(m-1\right)x-3-m=0\)  \(\left(1\right)\)

từ \(\left(1\right)\)  ta có \(\Delta'=\left[-\left(m-1\right)\right]^2-\left(-3-m\right)\)

\(\Delta'=m^2-2m+1+m+3\)

\(\Delta'=m^2-m+4\)

25 tháng 3 2018

Câu b, nx cơ bn ơi !

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với

Nhiều thế, chắc phải đưa ra đáp thôi

Ta có : \(2x^2+\left(2m-1\right)x+m-1=0\left(a=2;b=2m+1;c=m-1\right)\)

Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{-2m-1}{2};x_1x_2=\frac{m-1}{2}\)

Theo bài ra ta có : \(2x_1-3x_2=1\)Ta có hệ sau : 

\(\hept{\begin{cases}2x_1-3x_2=1\\x_1+x_2=\frac{-2m-1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}2x_1-3x_2=1\\3x_1+3x_2=\frac{-2m-1}{2}\end{cases}}}\)

\(\hept{\begin{cases}5x_1=-2m+1\\x_1+x_2=\frac{-2m-1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{-2m+1}{5}\left(1\right)\\x_1+x_2=\frac{-2m-1}{2}\left(2\right)\end{cases}}\)

Thay \(x_1\)vào pt 2 ta có : \(\frac{-2m+1}{5}+x_2=\frac{-2m-1}{2}\)

\(\Leftrightarrow\frac{-4m+2}{10}+\frac{10x_2}{10}=\frac{-10m-5}{10}\)Khử mẫu ta có pt mới : \(-4m+2+10x_2=-10m-5\)

\(10x_2=-6m-7\Leftrightarrow x_2=\frac{-6m-7}{10}\)

Vì \(x_1x_2=\frac{m-1}{2}\)nên \(\frac{-6m-7}{10}.\frac{-2m+1}{5}=\frac{12m^2+8m-7}{50}\)

Đặt \(\frac{12m^2+8m-7}{50}=\frac{m-1}{2}\Leftrightarrow\frac{12m^2+8m-7}{50}=\frac{25m-25}{50}\)

Khử mẫu ta ddc : \(12m^2+8m-7-25m+25=0\)

\(\Leftrightarrow12m^2-17m+18=0\) Ta có : \(\Delta=\left(-17\right)^2-4.12.18=289-864< 0\)

Sai đâu tớ chịu :v 

14 tháng 7 2020

Bạn sai rồi kìa Theo viet có tổng 2 nghiệm bằng -b chia a