K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

m2x - 4x = 5 - 3mx

<=> m2x - 4x + 3mx = 5

<=> x( m2 - 4 + 3m ) = 5

Để phương trình m2x - 4x = 5 - 3mx vô nghiệm thì:

m2 - 4 + 3m = 0

<=> m2 - 3 - 1 + 3m = 0

<=> ( m2 - 1 ) - 3( 1 - m ) = 0

<=> ( m - 1 )( m + 1 ) - 3( 1 - m ) = 0

<=> ( 1 - m )( -m - 1 ) - 3( 1 - m ) = 0

<=> ( 1 - m )( -m - 1 - 3 ) = 0

<=> ( 1 - m )( -m - 4 ) = 0

<=> \(\orbr{\begin{cases}1-m=0\\-m-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\-m=4\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=-4\end{cases}}}}\)

Vậy để thương trình trên vô nghiệm thì m = 1 hoặc m = -4

# Học tốt #

14 tháng 3 2017

3/(x^2-13x+40)+2/(x^2-8x+15)+1/(x^2-5x+6)+6/5+0

3/(x-8)(x-5)+2/(x-5)(x-3)+1/(x-3)(x-2)+6/5=0

1/(x-8)-1/(x-5)+1/(x-5)-1/(x-3)+1/(x-3)-1/(x-2)+6/5=0

1/(x-8)-1/(x-2)+6/5=0

ban tu giai tiep nhan

m^2x+2x=5-3mx

m^2x+3mx+2x=5

x(m^2+3m+2)=5

khi 0x=5 thi pt vo nghiem

m^2+3m+2=0

(m+1)(m+2)=0

m=-1 hoac m=-2

14 tháng 3 2017

ai giúp tui zới

13 tháng 3 2020

Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0

a) Xác định m để phương trình có một nghiệm x = 1.

b) Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình.

7 tháng 4 2020

Trên phương trình có m đâu mà tìm m vậy ? Mình sửa :

 \(x^3+mx^2-4x-4=0\)(1)

a) Thay \(x=1\), phương trình (1) trở thành :

\(1^3+m.1^2-4.1-4=0\)

\(\Leftrightarrow1+m-4-4=0\)

\(\Leftrightarrow m-7=0\)

\(\Leftrightarrow m=7\)

Vậy  \(x=1\Leftrightarrow m=7\)

b) Thay  \(m=7\), phương trình (1) trở thành :

\(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)^2-12=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4-2\sqrt{3}\right)\left(x+4+2\sqrt{3}\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{2\sqrt{3}-4;-2\sqrt{3}-4\right\}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2\sqrt{3}-4;-2\sqrt{3}-4\right\}\)

13 tháng 3 2020

bn ơi mik có thấy tham số m nào đâu ?

13 tháng 3 2020

chuyển M thành A

NV
23 tháng 4 2021

 \(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)

\(\Rightarrow VT>VP\)  ; \(\forall x\)

\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm

b.

\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)

\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)

Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)

Để nghiệm pt dương

\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)

19 tháng 3 2020

Ta có: (x-1)(x+1)-(x+2)2=3

<=> x2-1-x2-4x-4=0

<=> -4x=8

<=> x=-2

Để phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3 hay x=-6

Ta có:

6 x (-6)-5m=3+3m(-6)

<=> -5m+18m=39

<=> 13m=39

<=. m=3

Vậy với m=3 thì phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3

13 tháng 1 2017

Ta có:

\(\left(x+1\right)\left(x-1\right)-\left(x+2\right)^2=3\)

\(\Leftrightarrow4x+8=0\Leftrightarrow x=2\)

Ta lại có

\(6x-5m=3+3mx\)

\(\Leftrightarrow x\left(6-3m\right)=3+5m\)

\(\Leftrightarrow x=\frac{3+5m}{6-3m}\)

Vì pt này có nghiệm gấp 3 lần pt trên nên

\(\frac{3+5m}{6-3m}=6\)

\(\Leftrightarrow23m=33\Leftrightarrow m=\frac{33}{23}\)

27 tháng 4 2017

bị sai đề bài nhé

27 tháng 4 2017

Là sao? Đề nào sai cơ?

31 tháng 1 2018

Ta có : m2x+2x=5+3mx

<=>m2x+2x-3mx=5

<=> x(m2-3m+2)=5

Để phương trình m2x+2x=5+3mx vo nghiem

=> m2-3m+2=0

<=>(m2-2m+1)+(1-m)=0

<=>(1-m)(2-m)=0

<=> m=1;m=2

Vay....

18 tháng 3 2018

\(m^2x+2x=5+3mx\\ \Leftrightarrow m^2x+2x-3mx=5\\ \Leftrightarrow x\left(m^2+2-3m\right)=5\)

\(\Rightarrow\) Để phuongư trình vô nghiệm

thì \(\Rightarrow m^2+2-3m=0\)

\(\Leftrightarrow m^2-m-2m+2=0\\ \Leftrightarrow\left(m^2-m\right)-\left(2m-2\right)=0\\ \Leftrightarrow m\left(m-1\right)-2\left(m-1\right)=0\\ \Leftrightarrow\left(m-2\right)\left(m-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m-1=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

Vậy để phương trình vô nghiệm

thì \(m=1\) hoặc \(m=2\)