Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{3^{20}.5^{10}.5^{20}}{5^{30}.3^{15}}=3^5=243\)
hậu quả của việc chép sai đề là đây : mỏi tay , nhức óc , lại còn k đc ****
a.
\(\frac{45^{10}\times5^{20}}{75^{15}}=\frac{\left(3^2\times5\right)^{10}\times5^{20}}{\left(3\times5^2\right)^{15}}=\frac{3^{20}\times5^{10}\times5^{20}}{3^{15}\times5^{30}}=3^5=243\)
b.
\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,8\right)^5}{\left(0,4\right)^5}\times\frac{1}{\left(0,4\right)}=\left(\frac{0,8}{0,4}\right)^5\times\frac{1}{\frac{4}{10}}=2^5\times\frac{5}{2}=2^4\times5=16\times5=80\)
c.
\(\frac{2^{15}\times9^4}{6^6\times8^3}=\frac{2^{15}\times\left(3^2\right)^4}{\left(2\times3\right)^6\times\left(2^3\right)^3}=\frac{2^{15}\times3^8}{2^6\times3^6\times2^9}=3^2=9\)
Chúc bạn học tốt ^^
\(=\frac{\left(3\cdot3\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot5\cdot5\right)^{15}}\)
\(=\frac{3^{10}\cdot3^{10}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot5^{15}\cdot5^{15}}\)
\(=\frac{3^{20}\cdot5^{30}}{3^{15}\cdot5^{30}}\)
\(=3^5=243\)
nhớ nha
\(\frac{45^{10}.5^{20}}{75^{15}}\)
\(=\frac{\left(15.3\right)^{10}.5^{20}}{\left(15.5\right)^{15}}\)
\(=\frac{15^{10}.3^{10}.5^{20}}{15^{15}.5^{15}}\)
\(=\frac{3^{10}.5^5}{15^5}=\frac{3^{10}.5^5}{3^5.5^5}=3^5=243\)
\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(9.5\right)^{10}.5^{20}}{\left(3.5.5\right)^{15}}=\frac{9^{10}.5^{10}.5^{20}}{3^{15}.5^{15}.5^{15}}=\frac{9^{10}.5^{30}}{3^{15}.5^{30}}=\frac{9^{10}}{3^{15}}=243\)
\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(5.3^2\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\frac{5^{10}.3^{20}.5^{20}}{3^{15}.5^{30}}=\frac{5^{30}.3^{20}}{3^{15}.5^{30}}=\frac{3^5}{1}=3^5=243\)
Ta có: 4510.520=(32.5)10.(52)10
=320.(52)5.2510
=315.35.255.2510
=35(315.2515)
=35.7515
Do đó: \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{3^5.75^{15}}{7^{15}}=3^5\)
a) A = \(\frac{45^{10}.5^{10}}{75^{10}}=\frac{\left(5.3^2\right)^{10}.5^{10}}{\left(5^2.3\right)^{10}}=\frac{5^{10}.3^{20}.5^{10}}{5^{20}.3^{10}}=\frac{5^{20}.3^{10}}{5^{20}}=3^{10}=59049\)
b) B = \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,2.2^2\right)^5}{\left(0,2.2\right)^6}=\frac{\left(0,2\right)^5.2^{10}}{\left(0,2\right)^6.2^6}=\frac{2^4}{0,2}=\frac{16}{0,2}=80\)
c) C = \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{2^{15}}=3^2=9\)
\(A=\frac{\left(9^{10}×5^{10}×5^{10}\right)}{\left(25^{10}×3^{10}\right)}\)
\(A=\frac{\left(3^{20}×5^{20}\right)}{\left(5^{20}×3^{10}\right)}\)
\(A=\frac{3^{20}}{3^{10}}\)
\(A=3^{10}\)
\(\frac{45^{10}\times5^{20}}{75^{15}}=\frac{3^{20}\times5^{10}\times5^{20}}{3^{15}\times5^{30}}=3^5=243\)
I don't now
sorry
...................
nha
\(A=\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{3^{15}}=9\)
\(B=\frac{45^{10}.5^{10}}{75^{10}}=\frac{5^{10}.3^{20}.5^{10}}{5^{20}.3^{10}}=3^{10}\)
\(C=\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,4\right)^5.\left(0,2\right)^5}{0,4^6}=\frac{0,2^5}{0,2^2}=0,2^3\)
\(D=\frac{8^{10}+4^{10}}{8^{11}+4^{11}}=\frac{4^{10}\left(2^{10}+1\right)}{4^{11}\left(2^{11}+1\right)}=\frac{2^{10}+1}{2^{13}+1}\)
1. sai dấu nhé
2.a, \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
b, \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(\frac{4}{5}\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\cdot2\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\right)^5\cdot2^5}{\left(\frac{2}{5}\right)^5\cdot\frac{2}{5}}=2^5\div\frac{2}{5}=32\cdot\frac{5}{2}=80\)
c, \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{2^{15}}=3^2=9\)
https://olm.vn/hoi-dap/tim-kiem?id=223671728745&id_subject=1&q=+++++++++++T%C3%ACm+gi%C3%A1+tr%E1%BB%8B+c%E1%BB%A7a+bi%E1%BB%83u+th%E1%BB%A9c+:a)+4510%C3%975207515+++++++++++
a) \(\frac{45^{10}\times5^{20}}{75^{15}}\)
\(=\frac{\left(15\times3\right)^{10}\times5^{20}}{\left(15\times5\right)^{15}}\)
\(=\frac{15^{10}\times3^{10}\times5^{20}}{15^{15}\times5^{15}}\)
\(=\frac{1\times3^{10}\times5^5}{15^5\times1}\)
\(=\frac{3^{10}\times5^5}{\left(3\times5\right)^5}\)
\(=\frac{3^{10}\times5^5}{3^5\times5^5}\)
\(=3^5=243\)