K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

Ta có \(\left(x-2\right)^{2016}\ge0\)với mọi giá trị của x

\(\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x

=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x

=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\ge1\)với mọi giá trị của x

=> Amin = 1 khi và chỉ khi \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)

Ta lại có \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)

=> \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Vậy khi x = 2 và \(y=\frac{1}{2}\)thì \(A=\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\)đạt GTNN là 1.

7 tháng 5 2018

A = ( x-2)2016  +  (2y-1)2018 + 1

Ta có : ( x-2)2016\(\ge\)0

           (2y-1)2018\(\ge\)0

\(\Rightarrow\)  ( x-2)2016  +  (2y-1)2018 + 1\(\ge\)1

\(\Rightarrow\)A\(\ge\)1    \(\Rightarrow\)Min(A)=1

\(\Rightarrow\)\(\orbr{\begin{cases}\left(X-2\right)^{2016}=0\\\left(2Y-1\right)^{2018}=0\end{cases}}\)

Phần còn lại tự làm bạn nhé !

6 tháng 11 2016

a) Có \(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)

Để A đạt giá trị nguyên thì: \(\sqrt{x}-2\in U\left(4\right)\)

TH1: \(\sqrt{x}-2=1\Rightarrow x=9\)

TH2: \(\sqrt{x}-2=-1\Rightarrow x=1\)

TH3: \(\sqrt{x}-2=2\Rightarrow x=16\)

TH4: \(\sqrt{x}-2=-2\Rightarrow x=0\)

TH5: \(\sqrt{x}-2=4\Rightarrow x=36\)

TH6: \(\sqrt{x}-2=-4\Rightarrow\) k tồn tại x

Vậy:...

6 tháng 2 2020

(3x - 1)^2016 + (5y - 3)^2016 < 0    (1)

có (3x - 1)^2016 > 0 

     (5y - 3)^2018 > 0

=> (3x-1)^2016  + (5y - 3)^2018 > 0    và (1)

=> (3x - 1)^2016 + (5y - 3)^2016 = 0

=> 3x - 1 = 0 và 5y - 3 = 0

=> x = 1/23 và y = 3/5

6 tháng 2 2020

Thông cảm máy chụp đểu

8 tháng 11 2017

a, Vì |x-2y| >=0 và (x-3)^2010 = (x-3)^2.1005 = [(x-2)^1005]^2 >=0

=> |x-2y|+(x-3)^2010 >=0

=> C >= 7

Dấu "=" xảy ra<=> x-2y = 0 và x-3=0 <=>x=3 ; y= 3/2

Vậy Min C = 7 <=>x=3;y=3/2

b, Vì |x+5|>=0 nên 2014-|x+5| <= 2014

=> D = 2016/(2014-|x+5|) >= 2016/2014 = 1008/1007

Dấu "=" xảy ra <=> x+5 = 0<=> x= -5

Vậy Min D = 1008/1007 <=> x= -5 

29 tháng 11 2018

a) Có: \(\hept{\begin{cases}\left(2x-1\right)^{2014}\ge0\forall x\\\left|2x-y+4\right|\ge0\forall x;y\end{cases}}\)

\(\Rightarrow\left(2x-1\right)^{2014}+\left|2x-y+4\right|\ge0\forall x;y\)

\(\Rightarrow P\ge-2016\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-1\right)^{2014}=0\\\left|2x-y+4\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\2x-y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\2x-y=-4\end{cases}\Rightarrow}y=5}\)
vậy minP=-2016 khi x=1/2; y=5
 

b) có:\(\left|x-8\right|+\left|x+3\right|=\left|8-x\right|+\left|x+3\right|\ge\left|8-x+x+3\right|=\left|11\right|=11\)

\(\Rightarrow Q\ge11-15=-4\)

dấu "=" xảy ra khi: (x-8)(x+3)>=0
Suy ra: 8 >= x >= -3

vậy minQ=-4 khi 8 >= x >= -3 

18 tháng 3 2020

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta được:}\frac{x}{y}=\frac{y}{t}=\frac{t}{x}=\frac{x+y+t}{y+t+x}=1\Rightarrow x=y=t\)

\(\Rightarrow H=\frac{x^{2014}.y.t}{x^{2016}}=\frac{x^{2014}.x^2}{x^{2016}}=\frac{x^{2016}}{x^{2016}}=1\)