Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=x^2+2x\left(y+2\right)+2y^2+6y+10\)
\(=x^2+2x\left(y+2\right)+\left(y^2+4y+4\right)+\left(y^2+2y+1\right)+5\)
\(=x^2+2x\left(y+2\right)+\left(y+2\right)^2+\left(y+1\right)^2+5\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+5\ge5\forall x\)
\(\Rightarrow\)Min D = 5 tại \(\hept{\begin{cases}x+y+2=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)
=.= hk tốt!!
\(E=x^2+4xy+5y^2=x^2+4xy+4y^2+y^2=\left(x+2y\right)^2+y^2\ge0\forall x,y\)
=> Min E = 0 tại \(\hept{\begin{cases}x+2y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
Lời giải:
a) Gọi nghiệm chung của hai PT là \(a\). Có nghiệm chung nghĩa là PT
\(a^2+ma+2-(a^2+2a+m)=0\) phải có nghiệm
\(\Leftrightarrow (a-1)(m-2)=0\)
Do đó nếu hai PT có nghiệm chung thì nghiệm đó là \(a=1\)
Thay vào \(\Rightarrow m+3=0\Rightarrow m=-3\)
b) Để PT \((x^2+mx+2)(x^2+2x+m)=0\) có bốn nghiệm phân biệt thì mỗi PT bậc hai trên phải có hai nghiệm pb.
Trước tiên phải xác định điều kiện có nghiệm\( \left\{\begin{matrix} \Delta _1=m^2-8>0\\ \Delta _2=4-4m>0\end{matrix}\right.\Rightarrow m<-\sqrt{8}\)
PT đã cho không có có bốn nghiệm phân biệt tức là \(x^2+mx+2=0\) và \(x^2+2x+m=0\) không có nghiệm chung, tức là \(m\neq -3\)
Vậy \(\left\{\begin{matrix}m< -\sqrt{8}\\m\ne-3\end{matrix}\right.\)
c) Theo Viet có \(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=2\end{matrix}\right.+\left\{\begin{matrix} x_3+x_4=-2\\ x_3x_4=m\end{matrix}\right.\)
\(\Rightarrow E=x_1^2+x_2^2+x_3^2+x_4^2=m^2-4+4-2m=m^2-2m=(m-1)^2-1\geq -1\)
Vậy \(E_{\min}=-1\Leftrightarrow m=1\)
x2-2mx+5m2-16=0
sét \(\Delta=4m^2-20m^2+64=64-16m^2\)
để pt có nghiệm thì\(\Delta\ge0\rightarrow-2\le m\le2\)
áp dụng hệ thức Vi-et ta có:\(\left\{\begin{matrix}x_1+x_2=\frac{-b}{a}=2m\\x_1x_2=\frac{c}{a}=5m^2-16\end{matrix}\right.\)(1)
P=5x12+3x1x2-17x1+5x22+3x1x2-17x2=5(x12+x22)+6x1x2-17(x1+x2)
=5(x1+x2)2-4x1x2-17(x1+x2)
từ (1)ta có:P=5.4m2-4(5m2-16)-17.2m=64-34m
mà \(-2\le m\le2\)\(\rightarrow-4\le P\le132\)
vậy Pmin=-4 khi m=2
Pmax=132 khi m=-2
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{5}{2}\\x_1x_2=-\frac{1}{2}\end{matrix}\right.\)
\(A=\frac{x_1}{2x_2-1}+\frac{x_2}{2x_1-1}=\frac{x_1\left(2x_2-1\right)+x_2\left(2x_1-1\right)}{\left(2x_1-1\right)\left(2x_2-1\right)}\)
\(=\frac{4x_1x_2-\left(x_1+x_2\right)}{4x_1x_2-2\left(x_1+x_2\right)+1}=\frac{4.\left(-\frac{1}{2}\right)-\frac{5}{2}}{4.\left(-\frac{1}{2}\right)-2.\left(\frac{5}{2}\right)+1}=...\)
\(B=\frac{1}{\left(x_1+2\right)^2}+\frac{1}{\left(x_2+2\right)^2}=\frac{\left(x_1+2\right)^2+\left(x_2+2\right)^2}{\left(x_1+2\right)^2\left(x_2+2\right)^2}=\frac{x_1^2+x_2^2+4\left(x_1+x_2\right)+4}{\left[x_1x_2+2\left(x_1+x_2\right)+4\right]^2}\)
\(=\frac{\left(x_1+x_2\right)^2-2x_1x_2+4\left(x_1+x_2\right)+4}{\left[x_1x_2+2\left(x_1+x_2\right)+4\right]^2}=...\)
Bạn tự thay số và bấm máy
\(E=4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+2005\)
\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2005\ge2005\)
\(E_{min}=2005\) khi \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Hay quá!?!?!?!?!