K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

                                                           Bài giải

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\le x\le\frac{13}{4}+\frac{14}{8}\)

\(1\le x\le5\text{ }\Rightarrow\text{ }x\in\left\{1\text{ ; }2\text{ ; }3\text{ ; }4\text{ ; }5\right\}\)

10 tháng 3 2018

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{6}{6}=1\)

\(\frac{13}{14}+\frac{14}{8}=\frac{13.4}{14.4}+\frac{14.7}{8.7}=\frac{52}{56}+\frac{98}{56}=\frac{150}{56}\simeq2,68\)

Như vậy: \(1\le x\le2,68\)

Mà x thuộc N => x=1 và x=2

Đáp số: x=1 và x=2

2 tháng 5 2017

a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

Vậy...

2 tháng 5 2017

b, Đặt A là tên của tổng trên

Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B là biêu thức trong ngoặc

Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 2-\frac{1}{50}< 2\)

Thay B vào A ta được:

\(A< \frac{1}{2^2}.2=\frac{1}{2}\)

16 tháng 2 2019

Bài 3 

\(\frac{x-1}{9}=\frac{8}{3}\)

\(\Rightarrow\left(x-1\right).3=8.9\)

\(\Rightarrow\left(x-1\right).3=72\)

\(\Rightarrow x-1=24\)

\(\Rightarrow x=25\)

\(\frac{-x}{4}=\frac{-9}{x}\)

\(\Rightarrow\left(-x\right).x=\left(-9\right).4\)

\(\Rightarrow-x=-36\)

\(\Rightarrow x=36\)

\(\frac{x}{4}=\frac{18}{x+1}\)

\(\Rightarrow x.\left(x+1\right)=4.18\)

\(\Rightarrow x.\left(x+1\right)=72\)

Vì x và x + 1 là 2 số tự nhiên liên tiếp 

\(\Rightarrow x\left(x+1\right)=8.9\)

\(\Rightarrow\orbr{\begin{cases}x=8\\x=8\end{cases}}\)

Bài 4

\(\frac{x-4}{y-3}=\frac{4}{3},x-y=5\)

Ta có :

\(x-y=5\)

\(\Rightarrow x=5+y\)

\(\Rightarrow\frac{y+5-4}{y-3}=\frac{4}{3}\)

\(\Rightarrow\frac{y+1}{y-3}=\frac{4}{3}\)\(\)

\(\Rightarrow\left(y+1\right).3=\left(y-3\right).4\)

\(\Rightarrow y.3+1.3=y.4-3.4\)

\(\Rightarrow y.3+3=y.4-12\)

\(\Rightarrow y.3-y.4=-12-3\)

\(\Rightarrow-1y=-15\)

\(\Rightarrow y=\left(-15\right):\left(-1\right)\)

\(\Rightarrow y=15\)

Vì x = y + 5

\(\Rightarrow x=15+4\)

\(\Rightarrow x=19\)

Vậy x = 19 , y = 15

17 tháng 2 2019

\(\frac{-x}{4}=\frac{-9}{x}\)

\(\Rightarrow\left(-x\right).x=4.\left(-9\right)\)

\(\Rightarrow-x=-9;x=4\)

\(\Rightarrow x=9;x=4\)

19 tháng 4 2020

1) 

a) \(-\frac{8}{15}< \frac{x}{45}< -\frac{2}{5}\)

Lại có: \(-\frac{8}{15}=\frac{-24}{45};-\frac{2}{5}=\frac{-18}{45}\)

=> \(-\frac{24}{45}< \frac{x}{45}< -\frac{18}{45}\)

=> -24 < x < - 18 

=> x \(\in\){ - 23; -22; -21; -20 ; -19 } ( thử lại thỏa mãn )

b) \(x=\frac{-4}{3}+\frac{-7}{5}=-\frac{4.5}{3.5}+\frac{-7.3}{5.3}=-\frac{41}{15}\)

c) \(\frac{83}{x}=\frac{13}{4}+\frac{9}{10}=\frac{83}{20}\)

=> x = 20 ( thử lại thỏa mãn) 

d) \(x=\frac{10}{8}+\frac{-24}{48}+\frac{105}{-120}=-\frac{1}{8}\)

e) \(\left|x-\frac{1}{2}\right|=\left|-\frac{2}{7}\right|+\frac{5}{4}\)

\(\left|x-\frac{1}{2}\right|=\frac{2}{7}+\frac{5}{4}\)

\(\left|x-\frac{1}{2}\right|=\frac{43}{28}\)

TH1: \(x-\frac{1}{2}=\frac{43}{28}\)

         \(x=\frac{57}{28}\)

TH2: \(x-\frac{1}{2}=-\frac{43}{28}\)

      \(x=-\frac{29}{28}\)