Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{6}{6}=1\)
\(\frac{13}{14}+\frac{14}{8}=\frac{13.4}{14.4}+\frac{14.7}{8.7}=\frac{52}{56}+\frac{98}{56}=\frac{150}{56}\simeq2,68\)
Như vậy: \(1\le x\le2,68\)
Mà x thuộc N => x=1 và x=2
Đáp số: x=1 và x=2
a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Vậy...
b, Đặt A là tên của tổng trên
Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B là biêu thức trong ngoặc
Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow B< 2-\frac{1}{50}< 2\)
Thay B vào A ta được:
\(A< \frac{1}{2^2}.2=\frac{1}{2}\)
Bài 3
\(\frac{x-1}{9}=\frac{8}{3}\)
\(\Rightarrow\left(x-1\right).3=8.9\)
\(\Rightarrow\left(x-1\right).3=72\)
\(\Rightarrow x-1=24\)
\(\Rightarrow x=25\)
\(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow\left(-x\right).x=\left(-9\right).4\)
\(\Rightarrow-x=-36\)
\(\Rightarrow x=36\)
\(\frac{x}{4}=\frac{18}{x+1}\)
\(\Rightarrow x.\left(x+1\right)=4.18\)
\(\Rightarrow x.\left(x+1\right)=72\)
Vì x và x + 1 là 2 số tự nhiên liên tiếp
\(\Rightarrow x\left(x+1\right)=8.9\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=8\end{cases}}\)
Bài 4
\(\frac{x-4}{y-3}=\frac{4}{3},x-y=5\)
Ta có :
\(x-y=5\)
\(\Rightarrow x=5+y\)
\(\Rightarrow\frac{y+5-4}{y-3}=\frac{4}{3}\)
\(\Rightarrow\frac{y+1}{y-3}=\frac{4}{3}\)\(\)
\(\Rightarrow\left(y+1\right).3=\left(y-3\right).4\)
\(\Rightarrow y.3+1.3=y.4-3.4\)
\(\Rightarrow y.3+3=y.4-12\)
\(\Rightarrow y.3-y.4=-12-3\)
\(\Rightarrow-1y=-15\)
\(\Rightarrow y=\left(-15\right):\left(-1\right)\)
\(\Rightarrow y=15\)
Vì x = y + 5
\(\Rightarrow x=15+4\)
\(\Rightarrow x=19\)
Vậy x = 19 , y = 15
\(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow\left(-x\right).x=4.\left(-9\right)\)
\(\Rightarrow-x=-9;x=4\)
\(\Rightarrow x=9;x=4\)
1)
a) \(-\frac{8}{15}< \frac{x}{45}< -\frac{2}{5}\)
Lại có: \(-\frac{8}{15}=\frac{-24}{45};-\frac{2}{5}=\frac{-18}{45}\)
=> \(-\frac{24}{45}< \frac{x}{45}< -\frac{18}{45}\)
=> -24 < x < - 18
=> x \(\in\){ - 23; -22; -21; -20 ; -19 } ( thử lại thỏa mãn )
b) \(x=\frac{-4}{3}+\frac{-7}{5}=-\frac{4.5}{3.5}+\frac{-7.3}{5.3}=-\frac{41}{15}\)
c) \(\frac{83}{x}=\frac{13}{4}+\frac{9}{10}=\frac{83}{20}\)
=> x = 20 ( thử lại thỏa mãn)
d) \(x=\frac{10}{8}+\frac{-24}{48}+\frac{105}{-120}=-\frac{1}{8}\)
e) \(\left|x-\frac{1}{2}\right|=\left|-\frac{2}{7}\right|+\frac{5}{4}\)
\(\left|x-\frac{1}{2}\right|=\frac{2}{7}+\frac{5}{4}\)
\(\left|x-\frac{1}{2}\right|=\frac{43}{28}\)
TH1: \(x-\frac{1}{2}=\frac{43}{28}\)
\(x=\frac{57}{28}\)
TH2: \(x-\frac{1}{2}=-\frac{43}{28}\)
\(x=-\frac{29}{28}\)
Bài giải
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\le x\le\frac{13}{4}+\frac{14}{8}\)
\(1\le x\le5\text{ }\Rightarrow\text{ }x\in\left\{1\text{ ; }2\text{ ; }3\text{ ; }4\text{ ; }5\right\}\)