Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì đa thức chia là Q(x) bậc hai nên đa thức dư có dạng ax + b.
khi đó P(x) = Q(x). K(x) + ax +b.
lại có Q(x) có 2 nghiệm là 1 và - 1 nên ta có:
P(1) = a + b
P(-1) = -a + b.
mà P(1) = 0; P(-1) = 4. thay vào trên giải hệ ta tìm được a và b.
Đặt \(P\left(x\right)=x^{100}-x^{50}-2x^{25}-4=\left(x^2-1\right).G\left(x\right)+ax+b\)
Phần dư khi chia cho \(x^2-1\) là \(ax+b\)
Ta có: \(P\left(1\right)=1-1-2-4=\left(1^2-1\right)G\left(1\right)+a+b=a+b\)
\(\Rightarrow a+b=-6\) (1)
\(P\left(-1\right)=1-1+2-4=\left[\left(-1\right)^2-1\right].G\left(-1\right)-a+b=-a+b\)
\(\Rightarrow-a+b=-2\) (2)
Từ 1 và 2 suy ra \(a=-2\) ; \(b=-4\)
Vậy phần dư là \(-2x-4\)
Câu 1: 16958
Câu 2: 0 rõ đề bài
Câu 3: giống câu 2
Câu 4: 513
Câu 5: giống câu 2
Câu 6: giống câu 2
Câu 7: giống câu 2
Câu 8: giống câu 2
Câu 9: 26
Ta có \(f\left(x\right)=x^{2002}+x+1=A\left(x\right)\left(x-1\right)\left(x+1\right)+ax+b\)
VỚI x=1 \(\Rightarrow f\left(1\right)=a+b=3\)
với x=-1 \(\Rightarrow f\left(-1\right)=-a+b=1\)
Ta có hệ \(\hept{\begin{cases}a+b=3\\-a+b=1\end{cases}}\Rightarrow a=1,b=2\)
Vậy dư là x+2