K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

x^5 +x+1 x^3-x x^2 x^5-x^3 - x^3+x+1 +1 x^3-x - 2x+1

Vậy \(x^5+x+1\)chia cho \(x^3-x\) dư \(2x+1\)

27 tháng 7 2019

Ta có: \(x^3-x=x\left(x^2-1\right)=\left(x-1\right)x\left(x+1\right)\)

Để ý rằng đa thức chia là đa thức bậc 3 nên đa thức dư có bậc cao nhất là 2. Giả sử đó là ax2 + bx + c. 

Khi đó ta có \(x^5+x+1=\left(x-1\right)x\left(x+1\right).Q\left(x\right)+ax^2+bx+c\)

Do đẳng thức trên đúng với mọi x nên

Với x = 1 thì \(a+b+c=3\)(1)

Với x = 0 thì \(c=1\)

Với x = -1 thì -1 = a - b + c (2)

Thay c = 1 vào (1) và (2) ta được \(\hept{\begin{cases}a+b+1=3\\a-b+1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2\\a-b=-2\end{cases}}\Leftrightarrow2a=0\Leftrightarrow a=0\Rightarrow b=2\)

Vậy đa thức dư là \(0x^2+2x+1=2x+1\)

25 tháng 11 2019

Áp dụng định lí Bezout :

\(P\left(-2\right)=-1\Rightarrow4a-2b+3=-1\Rightarrow4a-2b=-4\)

\(P\left(1\right)=8\Rightarrow a+b+3=8\Rightarrow a+b=5\)

\(\Rightarrow\hept{\begin{cases}4a-2b=-4\\a+b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=4\end{cases}}}\)

9 tháng 2 2020

Hệ số bất định đi bn ey

6 tháng 11 2016

gọi g(x) là thương phép chia 

số dư có dạng ax+b

đặt x^99 + x^55 + x^11 + 7 = f(x)

ta có

f(x) = g(x) . (x^2 - 1) +ax+b

x = 1

=> f(1) = g(1) . (1^2 - 1) + a+b

 11 = a+b

x=-1

=> f(-1) = g(-1) . (-1^2 - 1) -a+b

=> 3 = -a+b

ta có

a+b = 11

b-a = 3

=> 2a = 8

=> a=4

b=7

thương phép chia là 4a+7