Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 25 \(\equiv\)1 ( mod 13 )
22017 = ( 25 )403 . 22 \(\equiv\)1403 . 2 \(\equiv\)2 ( mod 13 )
nếu là 20172017 thì bằng 1551693,6153
lấy 4 chữ số ở phần thập phân
t.i.c.k cho mình nhé
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
Dễ thấy mọi số mũ đều có dạng 4k+1
\(A=1^1+2^5+3^9+4^{13}+.....+504^{2013}+505^{2017}\)
\(=\overline{.....1}+\overline{....2}+\overline{.....3}+.....+\overline{......5}\)
Chia tổng A thành 50 nhóm và thừa 5 số hạng cuối
Chữ số tận cùng của 50 là
50=10*5 có chứa thừa số 10
nên cstc của 50 nhóm là 0
cstc của 5 số hạng cuối là 5
=> A có tận cùng là 5
Nguồn:Shitbo
a khi chia cho 17 dư 11 suy ra a có dạng \(17p+11\)
\(\Rightarrow a+74=17p+85⋮17\)
a khi chia cho 23 dư 18 suy ra a có dạng
\(23q+18\Rightarrow a+74=23q+92⋮23\)
a khi chia cho 11 dư 3 suy ra a có dạng
\(11r+3\Rightarrow a+74=11r+77⋮11\)
\(\Rightarrow a+74\in BC\left(17;23;11\right)\)
\(\Rightarrow a+74=4301k\)
\(\Rightarrow a+74-4301=4301k-4301\)
\(\Rightarrow a-4227=4301\left(k-1\right)\Rightarrow a=4301\left(k-1\right)+4227\) dư 4327
Có : 10^2017 = 1000...000 nên có tổng các chữ số là 1
=> 10^2017 chia 3 dư 2
Mà 10^2017 chia hết cho 5
=> 10^2017 chia cho 15 = 3.5 dư 2.5 = 10
Tk mk nha