Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2\left(x^4+4\right)}=3x^2-10x+6\)
\(\Leftrightarrow\sqrt{2\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=3x^2-10x+6\)
Đặt \(x^2-2x+2=a\)
\(\Leftrightarrow\sqrt{2a\left(a+4x\right)}=3a-4x\)
\(\Leftrightarrow2a\left(a+4x\right)=\left(3a-4x\right)^2\)
\(\Leftrightarrow\left(7a-4x\right)\left(4x-a\right)=0\)
Bài 2 nếu ko dùng casio thì tìm điểm rơi bằng đạo hàm very EZ.
\(A=x^2-3x+\frac{4}{x}+2016\)
\(=\left(x-2\right)^2+x+\frac{4}{x}+2016\)
\(\ge\left(x-2\right)^2+2\sqrt{x\cdot\frac{4}{x}}+2012\ge2016\)
Dấu "=" xảy ra tại \(x=2\)
Em không biết đạo hàm là gì (vì bác Cool Kid quá đẳng cấp, học hết kiến thức cấp 3) nên em chỉ dùng cách lớp 8 hèn mọn thôi! Mà bác Cool Kid dòng 3 nhầm cmnr
Nháp:
Giả sử A đạt min tại x = a.
Ta có: \(A=\left(x^2-2ax+a^2\right)+\left(2a-3\right)x+\frac{4}{x}+2016-a^2\)
\(\ge\left(x-a\right)^2+2\sqrt{4\left(2a-3\right)}+2016-a^2\)
Để đẳng thức xảy ra thì: \(\hept{\begin{cases}x=a\\\left(2a-3\right)x=\frac{4}{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=a^2\\x^2=\frac{4}{2a-3}\end{cases}}\Rightarrow a^2=\frac{4}{2a-3}\Rightarrow a=2\)
Thay ngược lại là xong. Trình bày như sau:
\(A=\left(x-2\right)^2+x+\frac{4}{x}+2012\)
\(\ge\left(x-2\right)^2+2\sqrt{x.\frac{4}{x}}+2012=2016\)
Đẳng thức xảy ra khi x = 2
Lời giải:
PT \(\Leftrightarrow \sqrt{2(x^4+4+4x^2-4x^2)}=3x^2-10x+6\)
\(\Leftrightarrow \sqrt{2[(x^2+2)^2-(2x)^2]}=3x^2-10x+6\)
\(\Leftrightarrow \sqrt{2(x^2+2-2x)(x^2+2+2x)}=3x^2-10x+6\)
Đặt \(\sqrt{2(x^2+2-2x)}=a; \sqrt{x^2+2+2x}=b(a,b\geq 0)\). Khi đó pt đã cho trở thành:
\(ab=2a^2-b^2\)
\(\Leftrightarrow 2a^2-ab-b^2=0\)
\(\Leftrightarrow (a-b)(2a+b)=0\Rightarrow \left[\begin{matrix} a-b=0\\ 2a+b=0\end{matrix}\right.\)
Nếu \(a-b=0\Leftrightarrow a=b\Rightarrow a^2=b^2\)
\(\Leftrightarrow 2x^2-4x+4=x^2+2+2x\)
\(\Leftrightarrow x^2-6x+2=0\Rightarrow x=3\pm \sqrt{7}\) (đều thỏa mãn)
Nếu \(2a+b=0\). Vì $a,b\geq 0$ nên điều này xảy ra khi $a=b=0$
\(\Leftrightarrow \sqrt{2x^2-4x+4}=\sqrt{x^2+2x+2}=0\) (không tìm được $x$ thỏa mãn)
Vậy........