K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2021

ĐKXĐ: 

\(sinx.cosx+2sinx-cosx-2\ge0\)

\(\Leftrightarrow sinx\left(cosx+2\right)-\left(cosx+2\right)\ge0\)

\(\Leftrightarrow\left(sinx-1\right)\left(cosx+2\right)\ge0\)

\(\Leftrightarrow sinx-1\ge0\) (do \(cosx+2>0\) với mọi x)

\(\Rightarrow sinx=1\)

\(\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

NV
22 tháng 9 2019

a/ ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k2\pi\\x\ne-\frac{\pi}{6}+k2\pi\\x\ne\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(1+sinx-2sin^2x\right)\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(cos2x+sinx\right)\)

\(\Leftrightarrow\sqrt{3}sinx-cosx=sin2x+\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=sin\left(2x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow...\)

b/ ĐKXĐ: \(cosx+\sqrt{3}sinx\ne0\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)\ne0\Rightarrow...\)

Đặt \(cosx+\sqrt{3}sinx=2sin\left(x+\frac{\pi}{6}\right)=a\) với \(-2\le a\le2\):

\(a=\frac{3}{a}+1\Leftrightarrow a^2-a-3=0\)

\(\Rightarrow\left[{}\begin{matrix}a=\frac{1+\sqrt{13}}{2}>2\left(l\right)\\a=\frac{1-\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow2sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{2}\)

\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{4}=sin\alpha\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\alpha+k2\pi\\x+\frac{\pi}{6}=\pi-\alpha+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\)

NV
1 tháng 9 2020

a/ \(y=2cos\left(\frac{\pi}{14}\right)cos\left(x-\frac{\pi}{14}\right)\)

Do \(-1\le cos\left(x-\frac{\pi}{14}\right)\le1\) với mọi x

\(\Rightarrow-2cos\left(\frac{\pi}{14}\right)\le y\le2cos\left(\frac{\pi}{14}\right)\)

\(y_{min}=-2cos\left(\frac{\pi}{14}\right)\) khi \(cos\left(x-\frac{\pi}{14}\right)=-1\)

\(y_{max}=2cos\left(\frac{\pi}{14}\right)\) khi \(cos\left(x-\frac{\pi}{14}\right)=1\)

b/ \(y=\sqrt{3}cos2x-\frac{1}{2}sin2x=\frac{\sqrt{13}}{2}\left(\frac{2\sqrt{39}}{13}cos2x-\frac{\sqrt{13}}{13}sin2x\right)\)

\(\Rightarrow y=\frac{\sqrt{13}}{2}cos\left(2x+a\right)\) với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{2\sqrt{39}}{13}\)

Do \(-1\le cos\left(2x+a\right)\le1\Rightarrow-\frac{\sqrt{13}}{2}\le y\le\frac{\sqrt{13}}{2}\)

c/ \(y=4sin^2x+4sinx+1+4cos^2x-4\sqrt{3}cosx+3\)

\(=8+4sinx-4\sqrt{3}cosx=8+8\left(\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\right)\)

\(=8+8sin\left(x-\frac{\pi}{3}\right)\)

Do \(-1\le sin\left(x-\frac{\pi}{3}\right)\le1\Rightarrow0\le y\le16\)

20 tháng 9 2017

NV
18 tháng 9 2020

23.

\(tan^2x\ge0\Rightarrow y\le2\)

\(y_{max}=2\) khi \(tanx=0\)

\(y_{min}\) không tồn tại

24.

\(-1\le cosx\le1\Rightarrow0< 1+cosx\le2\)

\(\Rightarrow y\ge\frac{1}{2}\)

\(y_{min}=\frac{1}{2}\) khi \(cosx=1\)

\(y_{max}\) ko tồn tại

NV
18 tháng 9 2020

19.

\(y=\sqrt{5-\frac{1}{2}\left(2sinxcosx\right)^2}=\sqrt{5-\frac{1}{2}sin^22x}\)

\(0\le sin^22x\le1\Rightarrow\frac{3\sqrt{2}}{2}\le y\le\sqrt{5}\)

\(y_{min}=\frac{3\sqrt{2}}{2}\) khi \(sin^22x=1\)

\(y_{max}=\sqrt{5}\) khi \(sin^22x=0\)

21.

\(y=2sin^2x-\left(1-2sin^2x\right)=4sin^2x-1\)

\(0\le sin^2x\le1\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sin^2x=0\)

\(y_{max}=3\) khi \(sin^2x=1\)

NV
25 tháng 8 2020

7.

\(\Leftrightarrow\left[{}\begin{matrix}2x-40^0=60^0+k360^0\\2x-40^0=120^0+n360^0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=50^0+k180^0\\x=80^0+n180^0\end{matrix}\right.\)

Do \(-180^0\le x\le180^0\Rightarrow\left\{{}\begin{matrix}-180^0\le50^0+k180^0\le180^0\\-180^0\le80^0+n180^0\le180^0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\frac{23}{18}\le k\le\frac{13}{18}\\-\frac{13}{9}\le n\le\frac{5}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\left\{-1;0\right\}\\n=\left\{-1;0\right\}\end{matrix}\right.\)

\(\Rightarrow x=\left\{-130^0;50^0;-100^0;80^0\right\}\)

8.

\(\Leftrightarrow sinx=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

NV
25 tháng 8 2020

5.

\(\Leftrightarrow\frac{\sqrt{2}}{2}sin2x+\frac{\sqrt{2}}{2}cos2x=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin2x.sin\frac{\pi}{4}+cos2x.cos\frac{\pi}{4}=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)

6.

\(\Leftrightarrow2sin2x=-1\)

\(\Leftrightarrow sin2x=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

19 tháng 6 2020

Cái chỗ biến đổi tương đương cuối cùng bạn làm rõ chút dc ko???

NV
19 tháng 6 2020

Ném đoạn \(2sin^2x+\left(3\sqrt{2}-2\right)sinx+1\) vào casio mà bấm pt bậc 2 thôi, nó sẽ tách ra biểu thức như cái cuối cùng

Hoặc là tách thế này:

\(2sin^2x+\left(3\sqrt{2}-2\right)sinx+1\)

\(=2\left[sin^2x-2.\frac{2-3\sqrt{2}}{4}sinx+\left(\frac{2-3\sqrt{2}}{4}\right)^2-\left(\frac{2-3\sqrt{2}}{4}\right)^2\right]+1\)

\(=2\left(sinx-\frac{2-3\sqrt{2}}{4}\right)^2-2\left(\frac{2-3\sqrt{2}}{4}\right)^2+1\)

\(=2\left(sin^2x-\frac{2-3\sqrt{2}}{4}\right)^2+\frac{6\sqrt{2}-7}{4}\)

Với lưu ý \(\frac{6\sqrt{2}-7}{4}>0\) nên biểu thức luôn dương

NV
5 tháng 10 2020

1.

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)+sinx.cosx-1=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx-1\right)\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=1\\sinx.cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\\\frac{1}{2}sin2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin2x=2\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
5 tháng 10 2020

2.

\(\Leftrightarrow\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx=cos2x\)

\(\Leftrightarrow cos2x=cos\left(x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x-\frac{\pi}{3}+k2\pi\\2x=\frac{\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

3.

\(\Leftrightarrow\sqrt{3}cosx-3sinx=2sin5x-2sinx\)

\(\Leftrightarrow\sqrt{3}cosx-sinx=2sin5x\)

\(\Leftrightarrow-\left(\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\right)=sin5x\)

\(\Leftrightarrow sin5x=-sin\left(x-\frac{\pi}{3}\right)=sin\left(\frac{\pi}{3}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\frac{\pi}{3}-x+k2\pi\\5x=\frac{2\pi}{3}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

29 tháng 7 2019
https://i.imgur.com/9qSBKHl.jpg
29 tháng 7 2019
https://i.imgur.com/zw6cbvs.jpg