Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện có nghĩa
a/ \(\hept{\begin{cases}x+2\ge0\\x-5\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\ne5\end{cases}}\)
b/ \(\hept{\begin{cases}2x-1\ge0\\x+3\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne-3\end{cases}}\)
c/ \(\left(x-3\right)\left(x+2\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge3\end{cases}}\)
d/ \(\hept{\begin{cases}2x-1\ge0\\-x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\le0\end{cases}}\)
Không tồn tại x để nó có nghĩa.
e/ \(\hept{\begin{cases}-3x\ge0\\x+2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le0\\x>-2\end{cases}}\)
\(\frac{5x-3}{2x}+\sqrt{3x+y}xđ\Leftrightarrow\hept{\begin{cases}2x\ne0\\3x+y\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ge-\frac{y}{3}\end{cases}}}\)
\(\sqrt{3x-1}+\frac{5x}{\sqrt{x+3}}xđ\Leftrightarrow\hept{\begin{cases}3x-1\ge0\\x+3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\x>-3\end{cases}\Rightarrow x\ge\frac{1}{3}}\)
Giải
Do \(\sqrt{a}\ge0\Leftrightarrow a\ge0\). Từ đó dễ dàng giải
a) \(\sqrt{2x^2}\ge0\Leftrightarrow2x^2\ge0\Leftrightarrow x\ge0\)
b) Đề sai bởi vì không có căn bậc 2 của số âm
c) \(\sqrt{2x^2+1}\ge0\Leftrightarrow2x^2+1\ge0\Leftrightarrow2x^2\ge-1\)
d) Đề sai vì không có căn bậc 2 của số âm
e) \(\sqrt{2-x^2}\ge0\Leftrightarrow2-x^2\ge0\Leftrightarrow x^2\le2\)
Rút gọn : \(Q=\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\) (ĐK : \(0\le x\ne\frac{1}{4}\))
\(=\frac{\left(\sqrt{x}+4\right)\left(4\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{4\sqrt{x}+1}{2\sqrt{x}-1}\)
\(Q\in Z\Leftrightarrow\frac{4\sqrt{x}+1}{2\sqrt{x}-1}\in Z\Leftrightarrow2+\frac{3}{2\sqrt{x}-1}\in Z\Leftrightarrow\frac{3}{2\sqrt{x}-1}\in Z\Rightarrow\left(2\sqrt{x}-1\right)\inƯ\left(3\right)\)
Do \(x\ge0\)nên \(2\sqrt{x}-1\ge-1\Rightarrow\left(2\sqrt{x}-1\right)\in\left\{-1;1;3\right\}\Leftrightarrow x\in\left\{0;1;4\right\}\)
Đặt câu hỏi xong thì nghĩ ra cách làm lun :v
Đặt \(t=\sqrt{x}\left(t\ge0;t\in Z\right)\)
Khi đó: \(P=\frac{2t^2}{t-2}=\frac{2\left(t^2-4\right)+8}{t-2}\)
\(=2\left(t+2\right)+\frac{8}{t-2}\)
\(\Rightarrow P\in Z\Leftrightarrow\frac{8}{t-2}\in Z\)
<=> t-2 \(\in\)Ư(8)
Vì t\(\ge0\Rightarrow t-2\ge-2\)
\(\Rightarrow t-2\in\){-2;-1;1;2;4;8}
=> t\(\in\){0;1;3;4;6;10}
Thay t = \(\sqrt{x}\)rồi đối chiếu đ/k là xong :)
a. ĐKXĐ : \(x\ne\frac{1}{2};\frac{5}{2};4;-\frac{3}{2};\frac{1\pm\sqrt{43}}{2}\)
\(A=\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+\)
\(=\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\frac{3x-8}{\left(2x-5\right)\left(x-4\right)}-\frac{3}{2x-1}\right).\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{\left(2x-3\right)\left(x-4\right)-\left(3x-8\right)\left(2x-1\right)-3\left(2x-5\right)\left(x-4\right)}{\left(2x-1\right)\left(2x-5\right)\left(x-4\right)}.\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{-10x^2+47x-56}{\left(2x-5\right)\left(x-4\right)}.\frac{2x+3}{-2x^2+2x+21}+1\) số to wa
Vì \(-2\inℤ\)và \(-2< 0\)nên để \(-2x\inℕ\)thì \(\hept{\begin{cases}-2x\inℤ\\-2x\ge0\end{cases}}\)hay \(\hept{\begin{cases}x\inℤ\\x\le0\end{cases}}\)