Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân 2 vế với x ta có :
\(\left(2m-1\right)x+5=x+1\)
\(< =>\left(2m-1\right)x^2+5x=x^2+x\)
\(< =>\left(2m-1\right)x^2-x^2+5x-x=0\)
\(< =>x^2\left(2m-2\right)+x\left(5-1\right)=0\)
\(< =>x\left[x\left(2m-2\right)+1\left(5-1\right)\right]=0\)
\(< =>x\left[2xm-2x+4\right]=0\)
\(< =>x\left[2\left(mx-x+2\right)\right]=0\)
\(< =>\orbr{\begin{cases}x=0\\2\left(mx-x+2\right)=0\end{cases}< =>\orbr{\begin{cases}x=0\\mx-x+2=0\end{cases}< =>x=0< =>m\in}}ℤ\)
a) x=3 có: 3(m-1) -m+5 =0
3m-3-m+5 =0 => m = -1
b) nếu m=1 có: (m-1)x = 0 => (m-1)x -m +5 = 0 => 4=0 vô lý
c) (m-1)x -m+5 =0 => x = (m-5)/(m-1)
+ nếu m=1 vô nghiệm
+ m khác 1 pt có nghiệm x =(m-5)/(m-1)
a)\(ĐKXĐ:x\ne m;x\ne2\)
\(\frac{x+1}{m-x}=\frac{x+4}{x-2}\)
\(\Leftrightarrow\left(m-x\right)\left(x+4\right)=\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow-x^2+\left(m-4\right)x+4m=x^2-x-2\)
\(\Leftrightarrow-2x^2+\left(m-3\right)x+\left(4m+2\right)=0\)
Để phương trình vô nghiệm thì \(\Delta< 0\)
hay \(\left(m-3\right)^2-4.\left(-2\right).\left(4m+2\right)< 0\)
\(\Leftrightarrow m^2-6m+9+32m+16< 0\)
\(\Leftrightarrow m^2+26m+25< 0\)
\(\Leftrightarrow m^2+26m+169-144< 0\)
\(\Leftrightarrow\left(m+13\right)^2< 144\)
\(\Leftrightarrow\orbr{\begin{cases}m+13< 12\\m+13>-12\end{cases}}\Leftrightarrow\orbr{\begin{cases}m< -1\\m>-25\end{cases}}\)
b) \(ĐKXĐ:x\ne m;x\ne1\)
\(1+\frac{2x+1}{m-x}=\frac{3x-5}{x-1}\)
\(\Leftrightarrow\frac{x+1+m}{m-x}=\frac{3x-5}{x-1}\)
\(\Leftrightarrow\left(x+1+m\right)\left(x-1\right)=\left(3x-5\right)\left(m-x\right)\)
\(\Leftrightarrow x^2+mx-m-1=3xm-5m-3x^2+5x\)
\(\Leftrightarrow4x^2-\left(2m+5\right)x+\left(4m-1\right)=0\)
Để phương trình vô nghiệm thì \(\Delta< 0\)
\(\Rightarrow\left(2m+5\right)^2-4.4.\left(4m-1\right)=4m^2-44m+41< 0\)
\(\Rightarrow4m^2-44m+121-80< 0\)
\(\Rightarrow\left(2m-11\right)^2< 80\)
\(\Rightarrow\orbr{\begin{cases}2m-11< \sqrt{80}\\2m-11>-\sqrt{80}\end{cases}}\)
Vậy \(\orbr{\begin{cases}m< \frac{\sqrt{80}+11}{2}\\m>-\frac{\sqrt{80}+11}{2}\end{cases}}\)
ĐKXĐ : \(x\ne5;2m\)
\(\frac{x+2m}{x-5}-1=\frac{x+5}{2m-x}+1\)
\(\Leftrightarrow\frac{x+2m-x+5}{x-5}=\frac{x+5+2m-x}{2m-x}\)
\(\Leftrightarrow\frac{2m+5}{x-5}=\frac{5+2m}{2m-x}\Leftrightarrow\frac{\left(2m+5\right)\left(2m-x\right)}{\left(x-5\right)\left(2m-x\right)}=\frac{\left(5+2m\right)\left(x-5\right)}{\left(x-5\right)\left(2m-x\right)}\)
\(\Leftrightarrow4m^2-2mx+10m-5x=5x-25+2mx-10m\)
\(\Leftrightarrow4m^2-4mx+20m-10x+25=0\)