Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ của \(\sqrt{2\left|x\right|-1}\) là \(2\left|x\right|-1\ge0\)
\(\Leftrightarrow2\left|x\right|\ge1\)
\(\Leftrightarrow\left|x\right|\ge\frac{1}{2}\)
\(\Rightarrow\orbr{\begin{cases}x\ge\frac{1}{2}\\x\le-\frac{1}{2}\end{cases}}\)
Trả lời:
\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)
\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2
Vậy với mọi x khác 2 thì căn thức có nghĩa
\(\sqrt{4x-x^2-2}\)
ĐKXĐ : \(4x-x^2-2\ge0\)
\(\Leftrightarrow x^2-4x+2\le0\)
Ta có : \(x^2-4x+2=0\)
\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot2=8>0\)
=> Phương trình có hai nghiệm
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)
Để \(x^2-4x+2\le0\)
\(\Rightarrow\orbr{\begin{cases}x\ge2+\sqrt{2}\\x\le2-\sqrt{2}\end{cases}}\)
Vậy ....
\(\sqrt{x^2-5}\ge0\Rightarrow x^2-5\ge0\)
\(\Rightarrow x^2\ge5\)
\(\Rightarrow x\ge\sqrt{5}\)
Vy Thị Hoàng Lan\(=-\sqrt{5}\)vẫn đúng nhé.
Ta có: \(\sqrt{x^2-5}=\sqrt{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}\)
Để căn thức có nghĩa thì \(x+\sqrt{5}\)và \(x-\sqrt{5}\)cùng dấu
\(TH1:\hept{\begin{cases}x+\sqrt{5}\ge0\\x-\sqrt{5}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\sqrt{5}\\x\ge\sqrt{5}\end{cases}}\Leftrightarrow x\ge\sqrt{5}\)
\(TH1:\hept{\begin{cases}x+\sqrt{5}\le0\\x-\sqrt{5}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-\sqrt{5}\\x\le\sqrt{5}\end{cases}}\Leftrightarrow x\le-\sqrt{5}\)
\(\frac{\sqrt{-3x}}{x^2-1}\)
Điều kiện để căn thức có nghĩa là :
\(\hept{\begin{cases}x^2-1\ne0\\-3x\ge0\end{cases}}< =>\hept{\begin{cases}x\ne\pm1\\x\le0\end{cases}}\)
a,\(\sqrt{\frac{x-3}{4-x}}\)
Biểu thức trên xác định
\(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\4>x\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\4< x\end{cases}}\)(loại)
Vậy biểu thức trên xác định khi \(3\le x< 4\)
b, \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)
Biểu thức trên xác định \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
Ta có \(x^2+2x+4=\left(x+1\right)^2+3\ge3\forall x\)nên \(x^2+2x+4>0\forall x\)
=> Biểu thức trên xác định \(\Leftrightarrow2x-3>0\)
\(\Leftrightarrow2x>3\)
\(\Leftrightarrow x>\frac{3}{2}\)
Vậy biểu thức trên xác định khi \(x>\frac{3}{2}\)
a)\(\sqrt{\frac{x-3}{4-x}}\)có nghĩa \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x>4\end{cases}}\)(Vô lí)
\(\Leftrightarrow3\le x< 4\)
b)\(\sqrt{\frac{x^2+2x+4}{2x-3}}\)có nghĩa \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+2x+4\ge0\\2x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+2x+4\le0\\2x-3< 0\end{cases}}\)
mà \(x^2+2x+4=\left(x+1\right)^2+2\ge2\forall x\)
nên \(\hept{\begin{cases}\left(x+1\right)^2+2\ge2\\2x-3>0\end{cases}}\)
\(\Leftrightarrow x>\frac{3}{2}\)
Căn thức cs nghĩa khi \(-x^2\ge0\Leftrightarrow x=0\)
để căn thức có nghĩa thì \(-x^2\ge0< =>x=0\)