Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(\sqrt{\frac{2x^2+1}{7x}}\)ĐK \(\hept{\begin{cases}\frac{2x^2+1}{7x}\ge0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x\ne0\end{cases}\Leftrightarrow}x>0}\)
- \(\frac{\sqrt{2x-1}}{x^2-9}=\frac{\sqrt{2x-1}}{\left(x-3\right)\left(x+3\right)}\)ĐK \(\hept{\begin{cases}2x-1\ge0\\\left(x-3\right)\left(x+3\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne3\\x\ne-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne3\end{cases}}}\)
- \(\sqrt{\frac{x+2}{5-x}}\)ĐK \(\hept{\begin{cases}\frac{x+2}{5-x}\ge0\\5-x\ne0\end{cases}}\)
- \(TH1:\hept{\begin{cases}x+2\ge0\\5-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x< 5\end{cases}\Leftrightarrow}-2\le x< 5}\)
- \(TH2:\hept{\begin{cases}x+2\le0\\5-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-2\\x>5\end{cases}VN}\)
Vậy đk là : \(-2\le x< 5\)
1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)
\(\Leftrightarrow2x-1>0\)
\(\Leftrightarrow x>\frac{1}{2}\)
\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)
Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)
2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)
Vậy \(ĐKXĐ:x\ge1\)
3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)
\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)
Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)
4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)
\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)
Vậy \(ĐKXĐ:1\le x\le3\)
a: ĐKXĐ: x>=0
b: ĐKXĐ: x-1>0 và -(x2-x-6)>=0
=>x>1 và (x-3)(x+2)<=0
=>x>1 và -2<=x<=3
=>1<x<=3
a/ đkxđ: \(\left\{{}\begin{matrix}x+1\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ne0\end{matrix}\right.\)
b/ đkxđ: \(\dfrac{1}{1-x}>0\Leftrightarrow1-x>0\Leftrightarrow x< 1\)
( vì 1 - x ≠ 0 mà 1 > 0 nên mk cho cả bt > 0 nhé )
c/ đkxđ: \(\dfrac{1}{1-x^2}\ge0\) và 1 - x2 ≠ 0
mà 1 > 0
=> 1 - x2 > 0 \(\Leftrightarrow\left(1-x\right)\left(1+x\right)>0\)
\(\Leftrightarrow-1< x< 1\)
d/ đkxđ: \(\dfrac{2x-4}{1+x^2}\ge0\) mà 1 + x2 > 0 ∀x
=> 2x - 4 ≥ 0
<=> 2x ≥ 4
<=> x ≥ 2
vậy...............
Bài 2:
a: ĐKXĐ: 2/3x-1/5>=0
=>2/3x>=1/5
hay x>=3/10
b: ĐKXĐ: \(\dfrac{x+1}{2x-3}>=0\)
=>2x-3>0 hoặc x+1<=0
=>x>3/2 hoặc x<=-1
c: ĐKXĐ: \(\left\{{}\begin{matrix}3x-5>=0\\x-4>0\end{matrix}\right.\Leftrightarrow x>4\)
\(a,\sqrt{1-3x}\)
\(< =>1-3x\ge0\)
\(3x\le1\)
\(x\le\frac{1}{3}\)
\(b,-3< 0\)
\(< =>2x-5\ne0;2x-5\le0< =>2x-5< 0\)
\(x< \frac{5}{2}\)
\(c,\sqrt{3x+2}+\sqrt{-2x+3}\)
\(\hept{\begin{cases}3x+2\ge0\\-2x+3\ge0\end{cases}}\)
\(\hept{\begin{cases}x\ge-\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)
\(< =>-\frac{2}{3}\le x\le\frac{3}{2}\)
\(d,\frac{x-5}{\sqrt{-4x}}\)
\(\sqrt{-4x}\ge0;\sqrt{-4x}\ne0< =>\sqrt{-4x}>0\)
\(-4x>0\)
\(x< 0\)
\(e,\sqrt{x-2}+\frac{1}{x-3}\)
\(\sqrt{x-2}\ge0;x-3\ne0\)
\(x\ge2;x\ne3\)
\(f,\sqrt{-\left(x-2\right)^2}\)
\(\sqrt{-\left(x-2\right)^2}\ge0\)
\(-\left|x-2\right|\ge0\)
\(-\left|x-2\right|\le0\)
lên chỉ có 1 nghiệm duy nhất là
\(x-2=0< =>x=2\)
\(g,\sqrt{\frac{-2x^2}{3x+2}}\)
\(-2x^2\le0\)
\(\sqrt{\frac{-2x^2}{3x+2}}\ge0< =>3x+2\le0;3x+2\ne0\)
\(x\le-\frac{2}{3};x\ne-\frac{2}{3}< =>x< -\frac{2}{3}\)
a)\(\sqrt{1-3x}\)có nghĩa \(\Leftrightarrow\sqrt{1-3x}\ge0\)
\(\Leftrightarrow1-3x\ge0\)
\(\Leftrightarrow-3x\ge-1\)
\(\Leftrightarrow x\ge\frac{1}{3}\)
b)\(\sqrt{\frac{-3}{2x-5}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-3}{2x-5}}\ge0\)
\(\Leftrightarrow\frac{-3}{2x-5}\ge0\)
\(\Leftrightarrow2x-5>0\)
\(\Leftrightarrow2x>5\)
\(\Leftrightarrow x>\frac{5}{2}\)
c)\(\sqrt{3x+2}+\sqrt{-2x+3}\)có nghĩa \(\sqrt{3x+2}+\sqrt{-2x+3}\ge0\)
\(\Leftrightarrow3x+2-2x+3\ge0\)
\(\Leftrightarrow x+5\ge0\)
\(\Leftrightarrow x\ge-5\)
d)\(\frac{x-5}{\sqrt{-4x}}\)có nghĩa \(\Leftrightarrow\frac{x-5}{\sqrt{-4x}}\ge0\)
\(\Leftrightarrow\frac{x-5}{\sqrt{-\left(2x\right)^2}}\ge0\)
\(\Leftrightarrow\frac{x-5}{-2x}\ge0\)
\(\Leftrightarrow-2x>0\)
\(\Leftrightarrow x>2\)(Câu này không chắc làm đúng không, chắc sai goi)
f)\(\sqrt{-x^2+4x-4}\)có nghĩa \(\Leftrightarrow\sqrt{-x^2+4x-4}\ge0\)
\(\Leftrightarrow-x^2+4x-4\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2\ge0\)
không có z thỏa mãn
g)\(\sqrt{\frac{-2x^2}{3x+2}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-2x^2}{3x+2}}\ge0\)
\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)
\(\Leftrightarrow3x+2>0\)
\(\Leftrightarrow3x>-2\)
\(\Leftrightarrow x>\frac{-2}{3}\)
@Cừu
Bài 1 : Để biểu thức có nghĩa -2x >= 0 <=> x =< 0
Bài 2 : Để biểu thức có nghĩa 2x - 6 >= 0 <=> x >= 3
bn có thể rõ hơn đc ko ạ