Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\sqrt{x^2-3x+7}\)
\(=\sqrt{x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{19}{4}}\)
\(=\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{19}{4}}\)
Vì \(\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{19}{4}>0\end{cases}\)\(\Rightarrow\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{19}{4}}>0\)
Vậy biểu thức có ngĩa với mọi x
a) A= \(\sqrt{x-1}+\sqrt{3-x}\)
ĐK: \(\hept{\begin{cases}x-1\text{ ≥ }0\\3-x\text{ ≥ }0\end{cases}}\)=> \(\hept{\begin{cases}x\text{ ≥ }1\\x\text{≤}3\end{cases}}\)
Vậy 1≤x≤3
b) \(\frac{1}{3-\sqrt{5}}-\frac{1}{\sqrt{5}+1}\)
\(=\frac{3+\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\frac{3+\sqrt{5}}{4}-\frac{\sqrt{5}-1}{4}\)
\(=\frac{3+1}{4}=1\)
a, 1 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 3
b, quy đồng mẫu ta được kết quả bằng 1
Đề gốc là \(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
\(\frac{P}{4}=\frac{x}{2.2\sqrt{y}}+\frac{y}{2.2\sqrt{z}}+\frac{z}{2.2\sqrt{x}}\)
Áp dụng BĐT Côsi:
\(2.2.\sqrt{x}\le x+2^2=x+4\)
\(\Rightarrow\frac{P}{4}\ge\frac{x}{y+4}+\frac{y}{z+4}+\frac{z}{x+4}=\frac{x^2}{xy+4x}+\frac{y^2}{yz+4y}+\frac{z^2}{zx+4z}\)
\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+4\left(x+y+z\right)}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{3}\left(x+y+z\right)^2+4\left(x+y+z\right)}=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+12}\)
\(=3-\frac{36}{x+y+z+12}\ge3-\frac{36}{12+12}=\frac{3}{2}\)
\(\Rightarrow P\ge6\)
Dấu bằng xảy ra khi \(x=y=z=4\)
a, Từ x+y=1
=>x=1-y
Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)
\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)
\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y
=>GTNN của x3+y3 là 1/4
Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)
Vậy .......................................
b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)
\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)
\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)
Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)
\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)
\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)
\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)
\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)
(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)
\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)
=>minP=1
Dấu "=" xảy ra <=>x=y=z
Vậy.....................
Lời giải:
1)
Để biểu thức có nghĩa thì:
\(2x^2-5x+3\geq 0\)
\(\Leftrightarrow 2x(x-1)-3(x-1)\geq 0\)
\(\Leftrightarrow (2x-3)(x-1)\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} x\geq \frac{3}{2}\\ x\leq 1\end{matrix}\right.\)
2)
\(\sqrt{6.5+\sqrt{12}}+\sqrt{6.5-\sqrt{12}}+2\sqrt{6}\)
\(=\sqrt{(\sqrt{6})^2+(\frac{1}{\sqrt{2}})^2+2\sqrt{6}.\frac{1}{\sqrt{2}}}+\sqrt{(\sqrt{6})^2+(\frac{1}{\sqrt{2}})^2-2\sqrt{6}.\frac{1}{\sqrt{2}}}+2\sqrt{6}\)
\(=\sqrt{(\sqrt{6}+\frac{1}{\sqrt{2}})^2}+\sqrt{(\sqrt{6}-\frac{1}{\sqrt{2}})^2}+2\sqrt{6}\)
\(=\sqrt{6}+\frac{1}{\sqrt{2}}+\sqrt{6}-\frac{1}{\sqrt{2}}+2\sqrt{6}=4\sqrt{6}\)
\(A=\dfrac{x-9}{3+\sqrt{x}}\) (đề như này pk?)
a) Để A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3+\sqrt{x}\ne0\left(lđ\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)
b) \(A=\dfrac{x-9}{3+\sqrt{x}}=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{3+\sqrt{x}}=\sqrt{x}-3\)
c) Với x=0 (tmđk) thay vào A ta được: \(A=\sqrt{0}-3=-3\)
Với x=-1 (ktm đk)
Với x=16 (tmđk) thay vào A ta được: \(A=\sqrt{16}-3=1\)
d) \(A\in Z\Leftrightarrow\sqrt{x}-3\in Z\Leftrightarrow\sqrt{x}\in Z\) \(\Leftrightarrow\) x là số chính phương
\(25-4x^2\ge0\Leftrightarrow x^2\le\frac{25}{4}\Leftrightarrow\orbr{\begin{cases}x\le\frac{25}{4}\\x\ge\frac{-25}{4}\end{cases}\Leftrightarrow\frac{-25}{4}\le x\le\frac{25}{4}}\)