K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

30 tháng 12 2019

Ta có :

\(\left\{{}\begin{matrix}mx+2my=m+1\\x+\left(m+1\right)y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\left(m+1\right)\\m\left(2-ym+y\right)+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\left(m+1\right)\\2m-m-1=ym^2-my\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\left(m+1\right)\\m-1=y\left(m^2-1\right)\end{matrix}\right.\)

Để pt có nghiệm duy nhất :

\(\Leftrightarrow m^2-1\ne0\)

\(\Leftrightarrow\left(m-1\right)\left(m+1\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-1\end{matrix}\right.\)

Khi đó pt có nghiệm duy nhất là :

\(\left\{{}\begin{matrix}x=1\\y=\frac{1}{m+1}\end{matrix}\right.\)

Vậy..

1/ Ta có : \(M\left(x,y\right)\) thuộc góc phần tư thứ nhất

\(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1>0\left(luônđúng\right)\\\frac{1}{m+1}>0\end{matrix}\right.\) \(\Leftrightarrow m+1>0\Leftrightarrow m>-1\)

Vậy....

30 tháng 12 2019

helloooo =))

12 tháng 2 2019

hệ có nghiệm duy nhất <=> \(\dfrac{\left(m+1\right)}{m}\ne\dfrac{-1}{1}\Leftrightarrow\dfrac{m+1}{m}\ne-1\Leftrightarrow m+1\ne-m\\ \Leftrightarrow2m\ne-1\Leftrightarrow m\ne-\dfrac{1}{2}\)

vậy \(m\ne-\dfrac{1}{2}\) thì hệ có nghiệm duy nhất là x=\(\dfrac{3+m}{2m+1}\) và y=\(\dfrac{m^2-2m}{2m+1}\)

x+y>0 <=> \(\dfrac{3+m}{2m+1}+\dfrac{m^2-2m}{2m+1}>0\Leftrightarrow\dfrac{m^2-m+3}{2m+1}>0\)(*)

\(m^2-m+3=m^2-2\cdot\dfrac{1}{2}m+\dfrac{1}{4}+\dfrac{11}{4}=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0,\forall m\)nên (*) <=> 2m+1>0 <=> m>-1/2

11 tháng 2 2019

Ai đó làm ơn giúp vớiiii :<<

20 tháng 1 2021

giúp mik đc ko, mikk cần gấp

hihi

Ta có: \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+mx=2+m\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=m-mx=m-m\cdot\dfrac{m+2}{2m-1}=m-\dfrac{m^2+2m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=\dfrac{2m^2-m-m^2-2m}{2m-1}=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)

Để x+y>0 thì \(\dfrac{m+2}{2m-1}+\dfrac{m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m+2+m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m^2-2m+2}{2m-1}>0\)

mà \(m^2-2m+2>0\forall m\)

nên 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0 thì \(m>\dfrac{1}{2}\)

10 tháng 3 2021

dễ lắm áp dụng công thức là ra